DENSE FUNCTORS AND DENSITY PRESENTATIONS

Research Frontiers 2

MRes Student: Giacomo Tendas Supervisor: Stephen Lack

ABSTRACT. Dense functors in ordinary and additive categories have been considered especially by Isbell [Isb60], Ulmer [Ulm68] and Diers [Die76]. In the more general context of enriched categories they were treated by Kelly [Kel82] and Day [Day74]; moreover in [Day77] the notion of density presentation was defined and developed. After introducing some notations and our background settings, we outline in sections 2 and 3 the most important features of density presentation following both [Day77] and [Kel82]. In the remaining sections we apply the preceding results in the context of monads, free cocompletions and reflective and coreflective subcategories.

CONTENTS

1.	Notations and Background	1
2.	Dense Functors and Presentations	3
3.	Left Kan Extensions and Adjoints	8
4.	Beck's Theorem	10
5.	Free Cocompletions	12
6.	Absolutely Dense Functors	14
References		16

1. NOTATIONS AND BACKGROUND

We fix here a complete and cocomplete symmetric monoidal closed category $\mathcal{V} = (\mathcal{V}_0, I, \otimes)$ as our base for enrichment. All notions should be understood as \mathcal{V} -enriched, so for example by saying category and functor we really mean \mathcal{V} -category and \mathcal{V} -functor.

We also allow all our categories to be large, unless specified otherwise. An unfortunate consequence of this is that, given \mathcal{A} , the presheaf category $[\mathcal{A}^{op}, \mathcal{V}]$ may not exist as \mathcal{V} -enriched category. We can avoid this problem considering $[\mathcal{A}^{op}, \mathcal{V}]$ as a \mathcal{V}' -category for some extension \mathcal{V}' of \mathcal{V} (see [Kel82]); this allows us to still work with them. We shall often use the notion of weighted colimit (and limit): given functors φ : $\mathcal{K}^{op} \to \mathcal{V}$ and $F : \mathcal{K} \to \mathcal{C}$, the colimit of F weighted by φ , if it exists in \mathcal{C} , is denoted by $\varphi * F$ and satisfies

$$\mathcal{C}(\varphi * F, c) \cong [\mathcal{K}^{op}, \mathcal{V}](\varphi, \mathcal{C}(F-, c))$$

naturally in $c \in C$. When \mathcal{K} is not small (as is possible in our setting) this means that $[\mathcal{K}^{op}, \mathcal{V}](\varphi, \mathcal{C}(F-, c))$ exists as an element of \mathcal{V} for each $c \in C$ and $\varphi * F$ satisfies the above condition.

Given a category \mathcal{C} , we denote by $|\mathcal{C}|$ the discrete category on \mathcal{C} ; this has the same objects of \mathcal{C} but its hom-objects are $\mathcal{C}(c,d) := 0$ the initial object of \mathcal{V}_0 for each $c \neq d \in \mathcal{C}$, and $\mathcal{C}(c,c) := I$.

More generally, given an ordinary locally small category \mathcal{L} , we'll consider the free \mathcal{V} category $\mathcal{L}_{\mathcal{V}}$ over \mathcal{L} ; it has the same objects of \mathcal{L} but hom-objects given by $\mathcal{L}_{\mathcal{V}}(l,m) :=$ $\mathcal{L}(l,m) \cdot I$ the coproduct of $\mathcal{L}(l,m)$ copies of I in \mathcal{V}_0 .

Since our main topic will be dense functors, we shall make use of the following notations: for any functor $N : \mathcal{A} \to \mathcal{C}$ denote by \widetilde{N} the composite:

$$\widetilde{N}: \mathcal{C} \xrightarrow{Y} [\mathcal{C}^{op}, \mathcal{V}] \xrightarrow{[N^{op}, 1]} [\mathcal{A}^{op}, \mathcal{V}]$$

$$c \longrightarrow \mathcal{C}(-, c) \longrightarrow \mathcal{C}(N-, c)$$

and, for $J: \mathcal{K} \to \mathcal{A}$:

$$\widehat{J}: \mathcal{A}^{op} \xrightarrow{Y'} [\mathcal{A}, \mathcal{V}] \xrightarrow{[J,1]} [\mathcal{K}, \mathcal{V}]$$

$$a \xrightarrow{} \mathcal{A}(a, -) \xrightarrow{} \mathcal{A}(a, J-)$$

where Y and Y' are respectively the covariant and controvariant Yoneda embeddings. These are also known as $\mathcal{C}(N, 1)$ and $\mathcal{A}(1, J)$ respectively (see [SW78] for instance), but we prefer the more compact notation \widetilde{N} and \widehat{J} .

Next we recall the definition and some of the main properties of left Kan extensions.

Definition 1.1 ([Kel82]). Given $N : \mathcal{A} \to \mathcal{C}$ and $F : \mathcal{A} \to \mathcal{B}$, the left Kan extension of F along N is a functor $G : \mathcal{C} \to \mathcal{B}$ together with a natural transformation $\phi : F \to GN$ such that for each $H : \mathcal{C}^{op} \to \mathcal{V}, \phi$ induces an isomorphism

$$HN^{op} * F \longrightarrow H * G.$$

We denote the left Kan extension of F along N by $\operatorname{Lan}_N F$; it is easy to see that this exists iff the colimits $\widetilde{N}c * F$ exist in \mathcal{B} for each $c \in \mathcal{C}$, and in that case is given by $\operatorname{Lan}_N F = \widetilde{N}(-) * F$. The following universal property is a consequence of definitions:

Theorem 1.2. Given $N : \mathcal{A} \to \mathcal{C}$ and $F : \mathcal{A} \to \mathcal{B}$, if $(\text{Lan}_N F, \phi)$ exists then ϕ induces a natural isomorphism

$$[\mathcal{C},\mathcal{B}](\operatorname{Lan}_N F,S)\cong [\mathcal{A},\mathcal{B}](F,SN)$$

for any $S : \mathcal{C} \to \mathcal{B}$.

2. Dense Functors and Presentations

We start this section with the definition of dense functor; this is probably the easiest one but at the same time the least intuitive. Other equivalent ways of defining them will be given later.

Definition 2.1. A functor $N : \mathcal{A} \to \mathcal{C}$ is called **dense** if $\widetilde{N} : \mathcal{C} \to [\mathcal{A}^{op}, \mathcal{V}]$ is fully faithful.

Now, given categories \mathcal{A}, \mathcal{B} and \mathcal{C} , denote by \mathcal{A} -Coct $[\mathcal{C}, \mathcal{B}]$ the full subcategory of $[\mathcal{C}, \mathcal{B}]$ of those functors preserving all existing colimits $\varphi * G$ with weight $\varphi : \mathcal{A}^{op} \to \mathcal{V}$.

The following Proposition gives a first characterization of dense functors and also a more intuitive way of thinking about them.

Proposition 2.2. Given $N : A \to C$, the following facts are equivalent:

- (1) N is dense;
- (2) for each \mathcal{B} , precomposition with N induces a fully faithful functor

 $[N, 1] : \mathcal{A}\text{-}\mathrm{Coct}[\mathcal{C}, \mathcal{B}] \to [\mathcal{A}, \mathcal{B}];$

(3) id_N exhibits 1_C as $Lan_N N$.

Proof. (2) \Rightarrow (1). Consider the Yoneda embedding $Y : \mathcal{C} \rightarrow [\mathcal{C}^{op}, \mathcal{V}] \simeq [\mathcal{C}, \mathcal{V}^{op}]^{op}$; since representables are continuous, Y lands in $(\mathcal{A}\text{-}\operatorname{Coct}[\mathcal{C}, \mathcal{V}^{op}])^{op}$. To conclude then note that $\widetilde{N} = [N, 1]^{op} \circ Y$; thus, by (2), it is full and faithful.

(1) \Rightarrow (3). By hypothesis for each c and d in C,

$$\widetilde{N}_{cd}: \mathcal{C}(c,d) \longrightarrow [\mathcal{A}^{op}, \mathcal{V}](\widetilde{N}c, \widetilde{N}d) \cong \mathcal{C}(\widetilde{N}c * N, d)$$

is invertible. As a consequence $c \cong \tilde{N}c * N$, where the isomorphism is induced by the identity map $id_{\tilde{N}c} : \tilde{N}c \to \tilde{N}c$. Then (3) follows.

 $(3) \Rightarrow (2)$. Let \mathcal{B} be any category and $F : \mathcal{C} \to \mathcal{B}$ an \mathcal{A} -cocontinuous functor; then $F(\widetilde{N}c * N) \cong \widetilde{N}c * FN$ for each c in \mathcal{C} , i.e. $\operatorname{Lan}_N(FN) \cong F(\operatorname{Lan}_N N) \cong F$. Then by the universal property 1.2 of the left Kan extension we get for each $S : \mathcal{C} \to \mathcal{B}$:

$$[\mathcal{C},\mathcal{B}](F,S) \cong [\mathcal{C},\mathcal{B}](\operatorname{Lan}_N(FN),S) \cong [\mathcal{A},\mathcal{B}](FN,SN)$$

the isomorphism being given by $[N, 1]_{FS}$. It follows then that the restriction of [N, 1] to \mathcal{A} -Coct $[\mathcal{C}, \mathcal{B}]$ is fully faithful.

If N is fully faithful, condition (2) says exactly that a full subcategory \mathcal{A} of \mathcal{C} is dense iff \mathcal{A} -cocontinuous functors with domain \mathcal{C} are determined by their restriction to \mathcal{A} ; this evidently calls to mind the more common notion of topological density between subspaces.

Dense functors which are also fully faithful can be characterized this way:

Proposition 2.3. A category C is equivalent to a full subcategory of a presheaf category $[\mathcal{A}^{op}, \mathcal{V}]$ containing the representables iff there is a fully faithful and dense functor $N : \mathcal{A} \to C$.

Proof. On one side, let $J : \mathcal{C} \to [\mathcal{A}^{op}, \mathcal{V}]$ be the inclusion; then, since \mathcal{C} contains the representables, we can consider as N the codomain restriction of the Yoneda embedding $Y : \mathcal{A} \to [\mathcal{A}^{op}, \mathcal{V}]$. It's easy to see that $J \cong \widetilde{N}$, hence N is dense and fully faithful. On the other hand, if N is fully faithful and dense then $\widetilde{N}N \cong Y : \mathcal{A} \to [\mathcal{A}^{op}, \mathcal{V}]$ so that \mathcal{C} contains the representables. \Box

Proving that a given functor is dense using one of the three equivalent conditions above may be rather hard; this is where the notion of density presentation comes to help. The following definition was introduced and developed by Day in [Day77].

Definition 2.4. A presentation for $N : \mathcal{A} \to \mathcal{C}$ is given by a quadruple $(\mathcal{K}, J, \varphi, \xi)$ with elements: a category \mathcal{K} , an index functor $J : \mathcal{K} \to \mathcal{A}$, a coefficient functor $\varphi : \mathcal{K}^{op} \otimes |\mathcal{C}| \to \mathcal{V}$ such that $\varphi(-, c) * NJ$ exists in \mathcal{C} for each c, and a morphism $\xi_c : \varphi(-, c) * NJ \to c$ for each $c \in \mathcal{C}$.

Recall that $|\mathcal{C}|$ is the discrete category on \mathcal{C} ; thus, the coefficient functor φ is just a collection of functors $\varphi_c := \varphi(-, c) : \mathcal{K}^{op} \to \mathcal{V}$ for each object c of \mathcal{C} .

Given a presentation $\mathcal{P} = (\mathcal{K}, J, \varphi, \xi)$; for each $c \in \mathcal{C}$ and $a \in \mathcal{A}$ there is an induced map $\bar{\xi}_{c,a} : \varphi_c * \widehat{J}a \to \mathcal{C}(Na, \varphi_c * NJ)$ in \mathcal{V} defined as the composite:

$$\varphi_c * \widehat{J}a = \varphi_c * \mathcal{A}(a, J-) \xrightarrow{\varphi_c * N} \varphi_c * \mathcal{C}(Na, NJ-) \xrightarrow{can} \mathcal{C}(Na, \varphi_c * NJ);$$

where can denotes the canonical comparison expressing the extent to which $\mathcal{C}(Na, -)$ preserves the colimit $\varphi_c * NJ$. For each c in \mathcal{C} , this gives a natural transformation $\bar{\xi}_c : \varphi_c * \widehat{J}(-) \to \widetilde{N}(\varphi_c * NJ)$ in $[\mathcal{A}^{op}, \mathcal{V}]$.

Note moreover that \mathcal{P} induces the following isomorphisms in \mathcal{V} for each $c, d \in \mathcal{C}$:

(1)

$$\begin{aligned}
\mathcal{C}(\varphi_c * NJ, d) &\cong [\mathcal{K}^{op}, \mathcal{V}](\varphi_c, \mathcal{C}(NJ -, d)) \\
&\cong [\mathcal{K}^{op}, \mathcal{V}](\varphi_c -, [\mathcal{A}^{op}, \mathcal{V}](\mathcal{A}(\Box, J -), \mathcal{C}(N\Box, d))) \\
&\cong [\mathcal{K}^{op}, \mathcal{V}](\varphi_c, [\mathcal{A}^{op}, \mathcal{V}](\widehat{J}, \widetilde{N}d)) \\
&\cong [\mathcal{A}^{op}, \mathcal{V}](\varphi_c * \widehat{J}, \widetilde{N}d)
\end{aligned}$$

where recall that $\widetilde{N} = \mathcal{C}(N, -)$ and $\widehat{J} = \mathcal{A}(-, J)$. We also point out that the composite of all the isomorphisms in (1) is given by

$$\mathcal{C}(\varphi_c * NJ, d) \xrightarrow{\widetilde{N}} [\mathcal{A}^{op}, \mathcal{V}](\widetilde{N}(\varphi_c * NJ), \widetilde{N}d) \xrightarrow{[\mathcal{A}^{op}, \mathcal{V}](\overline{\xi}_c, Nd)} [\mathcal{A}^{op}, \mathcal{V}](\varphi_c * \widehat{J}, \widetilde{N}d)$$

Of course, to get information about the density of N, a presentation $\mathcal{P} = (\mathcal{K}, J, \varphi, \xi)$ like in the previous definition is not enough. The existence of such a \mathcal{P} only guarantees that for each $c \in \mathcal{C}$ a certain colimit with values in the image of \mathcal{A} exists in \mathcal{C} and is in some way connected to the object c through ξ_c and $\overline{\xi_c}$.

In order to obtain the density of N from such a presentation we need to ask for some properties of these connecting morphisms ξ_c and $\overline{\xi}_c$:

Definition 2.5. Let $(\mathcal{K}, J, \varphi, \xi)$ be a presentation for $N : \mathcal{A} \to \mathcal{C}$; we say that it is a:

- generating presentation if ξ_c is an epimorphism for each $c \in C$;
- density presentation if ξ_c is a regular epimorphism, and $\mathcal{C}(Na, \xi_c)$ and $\overline{\xi}_{c,a}$ are epimorphisms for each $c \in \mathcal{C}$ and $a \in \mathcal{A}$;
- strict presentation if both ξ_c and $\overline{\xi}_{c,a}$ are isomorphisms for each $c \in \mathcal{C}$ and $a \in \mathcal{A}$.

A direct consequence of this definition is the following result:

Proposition 2.6. Let $\mathcal{P} := (\mathcal{K}, J, \varphi, \xi)$ be a presentation for N; then:

- (a) if \mathcal{P} is generating, then \tilde{N} is faithful;
- (b) if \mathcal{P} a density presentation, then N is dense;
- (c) if \mathcal{P} is strict, then N is dense and for each $c \in \mathcal{C}$ and $G : \mathcal{A}^{op} \to \mathcal{V}$,

$$[\mathcal{A}^{op}, \mathcal{V}](\widetilde{N}c, G) \cong [\mathcal{K}^{op}, \mathcal{V}](\varphi_c, GJ).$$

Proof. (a). For each c, d in C consider the commutative diagram:

$$\begin{array}{c} \mathcal{C}(c,d) \xrightarrow{\mathcal{C}(\xi_c,d)} & \mathcal{C}(\varphi_c * NJ,d) \xleftarrow{\cong} [\mathcal{A}^{op},\mathcal{V}](\varphi_c * \widehat{J},\widetilde{N}d) \\ & & & \downarrow & & \downarrow \\ & & & & \downarrow \\ \tilde{N} \xrightarrow{[\mathcal{A}^{op},\mathcal{V}](\bar{\xi}_c,\widetilde{N}d)} \\ & & & [\mathcal{A}^{op},\mathcal{V}](\tilde{N}c,\widetilde{N}d) \xrightarrow{[\mathcal{A}^{op},\mathcal{V}](\tilde{N}\xi_c,\widetilde{N}d)} [\mathcal{A}^{op},\mathcal{V}](\tilde{N}(\varphi_c * NJ),\widetilde{N}d) \end{array}$$

(the triangle commutes by 1). Since ξ_c is by assumption an epimorphism, $C(\xi_c, d)$ is a monomorphism. As a consequence \widetilde{N}_{cd} is a monomorphism too and hence N is faithful.

(b). Suppose now that $(\mathcal{K}, J, \varphi, \xi)$ is a density presentation. Consider for each $b, d \in \mathcal{C}$ the isomorphism

$$\mathcal{C}(\varphi_b * NJ, d) \xrightarrow{\widetilde{N}} [\mathcal{A}^{op}, \mathcal{V}](\widetilde{N}(\varphi_b * NJ), \widetilde{N}d) \xrightarrow{[\mathcal{A}^{op}, \mathcal{V}](\bar{\xi}_b, \widetilde{N}d)} [\mathcal{A}^{op}, \mathcal{V}](\varphi_b * \widehat{J}, \widetilde{N}d)$$

then $[\mathcal{A}^{op}, \mathcal{V}](\bar{\xi}_b, \tilde{N}d)$ is a split epimorphism, but it also is a monomorphism (since $\bar{\xi}_b$ is epi) and hence is invertible. As a consequence $\tilde{N} : \mathcal{C}(\varphi_b * NJ, d) \to [\mathcal{A}^{op}, \mathcal{V}](\tilde{N}(\varphi_b * NJ), \tilde{N}d)$ is itself an isomorphism.

Now fix c, d in C as before; by hypothesis ξ_c is a regular epimorphism, i.e. is the coequalizer of two maps $u, v : e \to (\varphi_c * NJ)$. Precomposing u and v with ξ_e (which is also a regular epimorphism) we get ξ_c as the coequalizer of $u \circ \xi_e, v \circ \xi_e : \varphi_e * NJ \to \varphi_c * NJ$. Consider now the previous diagram completed with u, v and ξ_e :

$$\begin{array}{c} \mathcal{C}(c,d) \xrightarrow{\mathcal{C}(\xi_c,d)} \mathcal{C}(\varphi_c * NJ,d) \xrightarrow{\mathcal{C}(u \circ \xi_e,d)} \mathcal{C}(\varphi_e * NJ,d) \\ & \overbrace{\tilde{N}_{cd}} & \downarrow \cong & \downarrow \cong \\ [\mathcal{A}^{op}, \mathcal{V}](\tilde{N}c,\tilde{N}d) \xrightarrow{m_{cd}} [\mathcal{A}^{op}, \mathcal{V}](\tilde{N}(\varphi_c * NJ),\tilde{N}d) \xrightarrow{\sim} [\mathcal{A}^{op}, \mathcal{V}](\tilde{N}(\varphi_e * NJ),\tilde{N}d) \end{array}$$

where the two vertical arrows in the right square are isomorphisms by the previous argument and $m_{cd} = [A^{op}, \mathcal{V}](\tilde{N}\xi_c, \tilde{N}_d)$ is a monomorphism since by hypothesis $\tilde{N}\xi_c$ is an epimorphism. Note moreover that $\mathcal{C}(\xi_c, d)$ is the equalizer of $\mathcal{C}(u \circ \xi_e, d)$ and $\mathcal{C}(v \circ \xi_e, d)$ since $\mathcal{C}(-, d)$ transforms colimits into limits; this and the commutativity of the diagram imply that there exists $r : [\mathcal{A}^{op}, \mathcal{V}](\tilde{N}c, \tilde{N}d) \to \mathcal{C}(c, d)$ such that $\mathcal{C}(\xi_c, d) \circ$ $r \cong m_{cd}$. Then, using that m_{cd} is monomorphism, it is easy to see that r is a right inverse of \tilde{N}_{cd} . Hence \tilde{N}_{cd} is a split epimorphism; by (a) it is also a monomorphism and hence is invertible; this means exactly that N is dense.

(c). Fix c in C and $G : \mathcal{A}^{op} \to \mathcal{V}$; then:

$$[\mathcal{A}^{op}, \mathcal{V}](\widetilde{N}c, G) \stackrel{\xi_c}{\cong} [\mathcal{A}^{op}, \mathcal{V}](\widetilde{N}(\varphi_c * NJ), G)$$
$$\stackrel{\bar{\xi}_c}{\cong} [\mathcal{A}^{op}, \mathcal{V}](\varphi_c * \widehat{J}, G)$$
$$\cong [\mathcal{K}^{op}, \mathcal{V}](\varphi_c, [\mathcal{A}^{op}, \mathcal{V}](\widehat{J}-, G))$$
$$\cong [\mathcal{K}^{op}, \mathcal{V}](\varphi_c, GJ).$$

When N is fully faithful we can also consider another notion of presentation which appears for example in Section 5 of [Kel82].

Definition 2.7. Let $N : \mathcal{A} \to \mathcal{C}$ be fully faithful; a **discrete** presentation for N is a (not necessarily small) family $(\mathcal{K}_{\gamma}, F_{\gamma} : \mathcal{K}_{\gamma}^{op} \to \mathcal{V}; P_{\gamma} : \mathcal{K}_{\gamma} \to \mathcal{A})_{\gamma \in \Gamma}$ such that the colimit $F_{\gamma} * NP_{\gamma}$ exists in \mathcal{C} for each γ and is N-absolute (i.e. is preserved by \widetilde{N}), and \mathcal{C} is the closure of \mathcal{A} under this family of colimits.

Note that, given a strict presentation of a fully faithful N, the fact that ξ_c and $\overline{\xi}_c$ are invertible says exactly that the colimits $\varphi_c * NJ$ are preserved by \widetilde{N} and hence are N-absolute.

The following Theorem connects Day's notion of presentation with that just introduced by proving that when N is a full inclusion there is no difference between them.

Theorem 2.8. Given $N : \mathcal{A} \to \mathcal{C}$, the following are equivalent:

- (1) N is dense;
- (2) N has a strict presentation.

If moreover N is fully faithful, they are further equivalent to:

(3) N has a discrete presentation.

Proof. (1) \Rightarrow (2). It is enough to consider the presentation $\mathcal{P} = (\mathcal{K}, J, \varphi, \xi)$ with $\mathcal{K} := \mathcal{A}, J := id_{\mathcal{A}}, \varphi_c := \widetilde{N}c$ and $\xi_c := \widetilde{N}c * N \xrightarrow{\cong} c$. Then $\overline{\xi}_{ca}$ is also invertible since

$$\varphi_c * \mathcal{A}(a, J-) = \widetilde{N}c * \mathcal{A}(a, -) \cong \mathcal{C}(Na, c) \cong \mathcal{C}(Na, \widetilde{N}c * N) = \mathcal{C}(Na, \varphi_c * NJ).$$

Thus \mathcal{P} is a strict presentation.

 $(2) \Rightarrow (1)$. Follows directly from the preceding Theorem.

 $(2) \Rightarrow (3)$. Given $\mathcal{P} = (\mathcal{K}, J, \varphi, \xi)$ strict, it is enough to consider the family

$$(\mathcal{K}_c := \mathcal{K}; F_c := \varphi_c; P_c := J)_{c \in \mathcal{C}}.$$

Indeed, the closure of \mathcal{A} under $F_c * NP_c$ is \mathcal{C} since $c \cong \varphi_c * NJ = F_c * NP_c$ for each c (\mathcal{P} is strict); moreover these colimits are N-absolute:

$$\widetilde{N}(\varphi_c * NJ) = \mathcal{C}(N -, \varphi_c * NJ) \stackrel{\xi_c}{\cong} \varphi_c * \widehat{J} \cong \varphi_c * \widetilde{N}(NJ),$$

where the last holds since N is fully faithful.

(3) \Rightarrow (2). Consider a family as in (3); then for each $c \in \mathcal{C}$ there exists $\gamma_c \in \Gamma$ such that $c \cong F_{\gamma_c} * NP_{\gamma_c}$ (*1) and $\widetilde{N}(F_{\gamma_c} * NP_{\gamma_c}) \cong F_{\gamma_c} * \widetilde{N}NP_{\gamma_c}$ (*2). Define a strict presentation $\mathcal{P} = (\mathcal{K}, J, \varphi, \xi_c)$ by:

$$\mathcal{K} := \sum_{c \in \mathcal{C}} \mathcal{K}_{\gamma_c},$$

$$J := (P_{\gamma_c})_{c \in \mathcal{C}} : \mathcal{K} \to \mathcal{A}$$

and $\varphi_c := (\psi_d)_d : \mathcal{K}^{op} \to \mathcal{V}$, where $\psi_d : \mathcal{K}^{op}_{\gamma_d} \to \mathcal{V}$ are defined as

$$\psi_d = \begin{cases} F_{\gamma_c} & d = c \\ 0 & d \neq c \end{cases}$$

Condition $(*_1)$ defines ξ_c and together with $(*_2)$ assures that the presentation \mathcal{P} so defined is strict.

3. Left Kan Extensions and Adjoints

We are now going to see some properties implied by strict density presentations. Let us fix henceforth $N : \mathcal{A} \to \mathcal{C}$ (not necessarily fully faithful) and a strict presentation $\mathcal{P} = (\mathcal{K}, J, \varphi, \xi).$

Proposition 3.1. For each $G : \mathcal{A} \to \mathcal{B}$, if $\varphi_c * GJ$ exists in \mathcal{B} then $\varphi_c * GJ \cong \widetilde{N}c * G$ for each $c \in \mathcal{C}$ and $\operatorname{Lan}_N G : \mathcal{C} \to \mathcal{B}$ exists.

Proof. Let $Y : \mathcal{B}^{op} \to [\mathcal{B}, \mathcal{V}]$ be the Yoneda embedding; since Y is fully faithful and transforms colimits of \mathcal{B} into limits, it is enough to prove that $Y(\varphi_c * GJ) \cong \{\widetilde{N}c, YG\}$ (this implies that $\widetilde{N}c * G$ exists in \mathcal{B} and is $\varphi_c * GJ$). Let then $b \in \mathcal{B}$:

$$\{\widetilde{N}c, YG\}(b) \cong \{\widetilde{N}c, \mathcal{B}(G-, b)\}$$
$$\cong [\mathcal{A}^{op}, \mathcal{V}](\widetilde{N}c, \mathcal{B}(G-, b))$$
$$\stackrel{2.6}{\cong} [\mathcal{K}^{op}, \mathcal{V}](\varphi_c, \mathcal{B}(GJ-, b))$$
$$\cong \{\varphi_c, YGJ\}(b).$$

Hence $\{\tilde{N}c, YG\} \cong \{\varphi_c, YGJ\} \cong Y(\varphi_c * GJ)$ as desired. About the existence of $\operatorname{Lan}_N G$, it follows since $\operatorname{Lan}_N G(c)$ is defined as $\tilde{N}c * G$ and this exists by the previous argument.

Corollary 3.2. Given $F : \mathcal{C} \to \mathcal{B}$, id_{FN} exhibits F as $Lan_N(FN)$ iff F preserves $\varphi_c * NJ$ for each c in \mathcal{C} .

Proof. We have $Fc \cong F(\varphi_c * NJ)$ through $F\xi_c$ and $\operatorname{Lan}_N(FN) \cong \widetilde{N}c * FN \cong \varphi_c * FNJ$ by the previous Proposition applied to FN. It follows that $Fc \cong \operatorname{Lan}_N(FN)c$ iff Fpreserves $\varphi_c * NJ$.

We are now going to see how strict presentations are related to adjoints.

Definition 3.3. Let $R : \mathcal{B} \to \mathcal{C}$, $N : \mathcal{A} \to \mathcal{C}$ and $F : \mathcal{A} \to \mathcal{B}$, we say that F is a left N-adjoint of R (and R is a right N-adjoint of F), written $F \dashv_N R$, if for each $a \in \mathcal{A}$ and $b \in \mathcal{B}$

$$\mathcal{B}(Fa,b) \cong \mathcal{C}(Na,Rb)$$

naturally in a and b.

Proposition 3.4. Let \mathcal{P} be a strict presentation for $N : \mathcal{A} \to \mathcal{B}$. Then:

- (1) $F : \mathcal{C} \to \mathcal{B}$ has a right adjoint iff it preserves $\varphi_c * NJ$ for each $c \in \mathcal{C}$ and FN has a right N-adjoint.
- (2) If $F \dashv_N R : \mathcal{B} \to \mathcal{C}$ and $\varphi_c * FJ$ exists in \mathcal{B} for each c, then R has a left adjoint.

Proof. (1). Suppose that F preserves $\varphi_c * NJ$ and $FN \dashv_N R : \mathcal{B} \to \mathcal{C}$. Then, by Corollary 3.2, $F \cong \text{Lan}_N(FN)$, i.e. $Fc \cong \tilde{N}c * FN$ for each c. As a consequence $F \dashv R$:

$$\mathcal{B}(Fc, b) \cong \mathcal{B}(Nc * FN, b)$$
$$\cong [\mathcal{A}^{op}, \mathcal{V}](\widetilde{N}c, \mathcal{B}(FN-, b))$$
$$\cong [\mathcal{A}^{op}, \mathcal{V}](\widetilde{N}c, \mathcal{C}(N-, Rb)) \quad (FN \dashv_N R)$$
$$\cong \mathcal{C}(c, Rb) \quad (N \text{ dense})$$

Vice versa, let $R : \mathcal{B} \to \mathcal{C}$ be a right adjoint for F; then F preserves all colimits and by adjointness $\mathcal{B}(FNa, b) \cong \mathcal{C}(Na, Rb)$. In particular F preserves $\varphi_c * NJ$ and $FN \dashv_N R$. (2). Let $\overline{F} : \mathcal{C} \to \mathcal{B}$ be defined as $\overline{F}c := \varphi_c * FJ$; then:

$$\mathcal{B}(\bar{F}c, b) = \mathcal{B}(\varphi_c * FJ, b)$$

$$\cong [\mathcal{K}^{op}, \mathcal{V}](\varphi_c, \mathcal{B}(FJ -, b))$$

$$\cong [\mathcal{K}^{op}, \mathcal{V}](\varphi_c, \mathcal{C}(NJ -, Rb)) \quad (F \dashv_N R)$$

$$\cong \mathcal{C}(\varphi_c * NJ, Rb) \cong \mathcal{C}(c, Rb).$$

Note that a priori \overline{F} is not well defined (since φ_c is discrete on $c \in \mathcal{C}$), but as a consequence of these isomorphisms it becomes an actual functor $\overline{F} : \mathcal{C} \to \mathcal{B}$.

The following is the main theorem of this section, it explains in which circumstances an N-adjunction induces an equivalence of categories. We are going to see a direct application of this in the next section.

Theorem 3.5. Let \mathcal{P} be a strict presentation for $N : \mathcal{A} \to \mathcal{C}$. Suppose that $F \dashv_N R : \mathcal{B} \to \mathcal{C}$ and let $\overline{F} \dashv R$ be given with $\overline{F}c = \varphi_c * FJ$. Then:

- (1) If R is conservative, preserves $\varphi_{Rb} * FJ$ for each $b \in \mathcal{B}$, and $N \cong RF$, then R is fully faithful and F is dense.
- (2) R is an equivalence (with inverse \overline{F}) iff it is conservative, preserves $\varphi_c * FJ$ for each $c \in \mathcal{C}$ and $N \cong RF$.

Proof. (1). By hypothesis $\overline{F} \dashv R$; thus for each $b \in \mathcal{B}$ we can consider the counit of the adjunction $\overline{F}Rb \to b$ which, together with R, induces the following isomorphisms:

$$R\bar{F}Rb \cong R(\varphi_{Rb} * FJ) \quad (def \ of \ \bar{F})$$
$$\cong \varphi_{Rb} * RFJ \quad (by \ 1)$$
$$\cong \varphi_{Rb} * NJ \quad (N \cong RF)$$
$$\cong Rb \quad (strict \ presentation)$$

But R is conservative, thence the counit $\overline{F}Rb \to b$ is an isomorphism; as a consequence R is fully faithful. Finally to see that F is dense, it is enough to consider the presentation $(\mathcal{K}, J, \varphi', \xi')$ with \mathcal{K} and J as before, $\varphi'_b := \varphi_{Rb}$ and $\xi'_b := \xi_{Rb}$. This is a strict presentation since the original one was; thus F is dense by Proposition 2.6.

(2). Suppose first that R is an equivalence; note that in this case the left N-adjoint F can be defined simply as $R^{-1}N$ and \overline{F} as R^{-1} . The only non trivial thing to prove is that $N \cong RF$. This is true iff $\overline{F}N \cong F$ (because $\overline{F} = R^{-1}$), but $\overline{F} \dashv R$ and $F \dashv_N R$ imply $\mathcal{B}(\overline{F}Na, b) \cong \mathcal{C}(Na, Rb) \cong \mathcal{B}(Fa, b)$ for each $b \in \mathcal{B}$ and thus $\overline{F}Na \cong Fa$.

Vice versa if R is conservative, preserves $\varphi_c * FJ$ and $N \cong RF$, by point (1) we only need to prove that $R\bar{F} \cong id_{\mathcal{C}}$. Let $c \in \mathcal{C}$; then $c \cong \varphi_c * NJ \cong \varphi_c * RFJ \cong R(\varphi_c * FJ) \cong R\bar{F}c$.

4. Beck's Theorem

In this section we are going to apply Theorem 3.5 in the context of monads to get a proof of Beck's theorem on monadic adjunctions.

Let (T, μ, η) be a monad in \mathcal{V} -Cat, where $T : \mathcal{C} \to \mathcal{C}$ is a functor, $\mu : T^2 \to T$ is the multiplication and $\eta : id_{\mathcal{C}} \to T$ the unit. Consider the Eilenberg-Moore category \mathcal{C}^T of T-algebras whose objects are algebras $(c, \zeta : Tc \to c)$ in \mathcal{C} and the hom-objects are defined as the equalizer

$$\mathcal{C}^{T}((c,\zeta_{c}),(d,\zeta_{d})) \xrightarrow{\mathcal{C}(c,d)} \mathcal{C}(c,d) \xrightarrow{\mathcal{C}(\zeta_{c},d)} \mathcal{C}(Tc,d)$$

Inside \mathcal{C}^T we consider the Kleisli category \mathcal{C}_T with objects free *T*-algebras, i.e. algebras of the form (Tc, μ_c) for some $c \in \mathcal{C}$.

Let $N : \mathcal{C}_T \to \mathcal{C}^T$ be the inclusion; we are going to show that N is dense by constructing a strict presentation. Before that, we first need to recall a general fact about algebras:

Proposition 4.1 ([ML71]). For any *T*-algebra (c, ζ) in \mathcal{C}^T , $\zeta : Tc \to c$ is the split coequalizer in \mathcal{C} of μ_c and $T\zeta$ with splitting maps $T^2c \xleftarrow{\eta_{Tc}} Tc \xleftarrow{\eta_c} c$. In particular ζ is an absolute coequalizer, i.e. it is preserved by each functor $G : \mathcal{C} \to \mathcal{B}$.

Consider now the free \mathcal{V} -category \mathcal{D} over the ordinary category

$$\{2 \xrightarrow[s]{m} 1\};$$

and define a strict presentation for N as follows: $\mathcal{K} := \mathcal{D} \otimes \mathcal{C}^T$, the index functor $J : \mathcal{K} \to \mathcal{C}_T$ is such that:

$$J(i,-) := \mathcal{C}^T \xrightarrow{U^T} \mathcal{C} \xrightarrow{T^{i-1}} \mathcal{C} \xrightarrow{J} \mathcal{C}_T$$

where U^T is the forgetful functor, J is the canonical functor sending c to (Tc, μ_c) and i = 1, 2.

On the other side, given $\mathbf{c} = (c, \zeta)$ in \mathcal{C}^T , set

$$J(m, \mathbf{c}) := \mu_c : T^2 \mathbf{c} \to T \mathbf{c};$$

$$J(s, \mathbf{c}) := T\zeta : T^2 \mathbf{c} \to T \mathbf{c}.$$

The coefficient functor $\varphi : \mathcal{K}^{op} \otimes |\mathcal{C}^T| \to \mathcal{V}$ is defined as the composite

$$\mathcal{K}^{op} \otimes |\mathcal{C}^{T}| = \mathcal{D} \otimes \mathcal{C}^{T} \otimes |\mathcal{C}^{T}| \xrightarrow{\pi_{\mathcal{D}}} \mathcal{C}^{T} \otimes |\mathcal{C}^{T}| \xrightarrow{\mathcal{C}^{T}(-, |-|)} \mathcal{V}$$

Finally, let $\mathbf{c} = (c, \zeta)$ be an object of \mathcal{C}^T ; then set $\xi_{\mathbf{c}}$ to be the isomorphism:

$$\begin{split} \varphi_{\mathbf{c}} * NJ &\cong \operatorname{colim}_{d \in \mathcal{D}} (\varphi(d, -, \mathbf{c}) * NJ(d, -)) \\ &\cong \operatorname{colim}_{d \in \mathcal{D}} (\mathcal{C}^{T}(-, \mathbf{c}) * NJ(d, -)) \\ &\cong \operatorname{colim}_{d \in \mathcal{D}} NJ(d, \mathbf{c}) \\ &\cong \operatorname{coeq}(\mu_{c}, T\zeta) \\ &\cong \mathbf{c} \quad (by \ 4.1) \end{split}$$

We have just defined a presentation for N, to see that it is strict note that for each **a** in C_T ,

$$\varphi_{\mathbf{c}} * \widehat{J} \mathbf{a} \cong \varphi_{\mathbf{c}} * \mathcal{C}^T(N\mathbf{a}, NJ -) \cong \mathcal{C}^T(N\mathbf{a}, \varphi_{\mathbf{c}} * NJ)$$

since N is fully faithful and the coequalizer $\varphi_{\mathbf{c}} * NJ$ is absolute. This means exactly that $\overline{\xi}_{\mathbf{ca}}$ is also invertible for each $\mathbf{c} \in \mathcal{C}^T$ and $\mathbf{a} \in \mathcal{C}_T$; i.e. $(\mathcal{K}, J, \varphi, \xi)$ is a strict presentation.

An immediate consequence of this is that the inclusion $N : \mathcal{C}_T \to \mathcal{C}^T$ is dense; moreover we can apply Theorem 3.5 to get:

Theorem 4.2 (Beck). An adjunction $L \dashv R : \mathcal{B} \to \mathcal{C}$ is monadic iff R is conservative and creates coequalizers of R-split pairs (i.e. of those pairs (f,g) such that (Rf, Rg)has a split coequalizer in \mathcal{C}).

Proof. One direction is done in the usual way and can be found for example in [ML71]. For the other direction, suppose that R is conservative and creates coequalizers of R-split pairs. Let $(T = RL, \mu = R\epsilon L, \eta)$ be the monad induced by the adjunction $(\eta$ and ϵ are respectively the unit and counit); then the previous argument gives a strict presentation $(\mathcal{K}, J, \varphi, \xi)$ for the inclusion $N : C_T \to C^T$.

Let $K : \mathcal{B} \to \mathcal{C}^T$ be the comparison functor defined on objects by $Kb = (Rb, R\epsilon_b) \in \mathcal{C}^T$; to apply Theorem 3.5 we need to find, among the other things, an ordinary left adjoint and a left N-adjoint to K. Let $U^T : \mathcal{C}^T \to \mathcal{C}$ be the forgetful functor; define then $F : \mathcal{C}^T \to \mathcal{B}$ as the coequalizer

$$LRLU^T \xrightarrow[]{\alpha}{\longrightarrow} LU^T \longrightarrow F$$

where α is defined on components $\mathbf{c} = (c, \zeta) \in \mathcal{C}^T$ as $\alpha_{\mathbf{c}} := L\zeta : LRLc \to Lc$. Note that this coequalizer exists in $[\mathcal{C}^T, \mathcal{B}]$ since for each $(c, \zeta) \in \mathcal{C}^T$ the pair $(L\zeta, \epsilon_{Lc})$ is *R*-split (by 4.1) and *R* creates coequalizers of such pairs. Then $F \dashv K$; indeed for each $\mathbf{c} = (c, \zeta) \in \mathcal{C}^T$ and $b \in \mathcal{B}$ we have:

$$\mathcal{B}(F\mathbf{c}, b) \cong \mathcal{B}(\operatorname{coeq}(L\zeta, \epsilon Lc), b)$$
$$\cong \operatorname{eq}(\mathcal{B}(L\zeta, b), \mathcal{B}(\epsilon Lc, b))$$
$$\cong \operatorname{eq}(\mathcal{C}(\zeta, Rb), \mathcal{C}(RLc, R\epsilon b) \circ RL) \quad (L \dashv R)$$
$$= \mathcal{C}^{T}(\mathbf{c}, Kb);$$

As a consequence $FN \dashv_N R$ and, since $KF \cong id_{\mathcal{C}^T}$ by construction, $N \cong K(FN)$. Moreover K is conservative and preserves the colimits $\varphi_c * FNJ \cong \operatorname{coeq}(F\mu_c, FT\zeta)$ for each $\mathbf{c} = (c, \zeta) \in \mathcal{C}^T$ since R does; hence we can apply Theorem 3.5(2) and get that K is an equivalence.

5. Free Cocompletions

Here we apply the theory of density presentations to get information on the free cocompletions of categories under a certain class of colimits. The results we show are taken from [Kel82], but a more detailed treatment of such cocompletions and their properties can be found in [KS05].

Given a category \mathcal{A} , it's reasonable to look for its free cocompletion (under a class of colimits) in the category of presheaves $[\mathcal{A}^{op}, \mathcal{V}]$ like it happens in the ordinary case. The problem is that we want the free cocompletion to be a \mathcal{V} -category like \mathcal{A} , but $[\mathcal{A}^{op}, \mathcal{V}]$ may not be (as we said in section 1). To avoid this, instead of considering all presheaves we can restrict ourselves to the small ones:

Definition 5.1. Let \mathcal{A} be a category; a presheaf $F : \mathcal{A}^{op} \to \mathcal{V}$ is called small if there exists a small \mathcal{K} and a functor $J : \mathcal{K} \to \mathcal{A}$ such that $F \cong \operatorname{Lan}_{J^{op}} H \cong H * \mathcal{A}(-, J)$ for some $H : \mathcal{K}^{op} \to \mathcal{V}$. Denote by $\mathscr{P}\mathcal{A}$ the full subcategory of $[\mathcal{A}^{op}, \mathcal{V}]$ whose objects are small functors.

It is interesting to note (Proposition 4.83 in [Kel82]) that if $F : \mathcal{A} \to \mathcal{V}$ is small the functor J in the definition can be chosen to be fully faithful, so that F is the left Kan extension of its restriction to a small full subcategory of \mathcal{A} .

As we anticipated, the category $\mathscr{P}\mathcal{A}$ of small presheaves is a \mathcal{V} -category: for each F small and any G (using the universal property of Lan) we have

$$[\mathcal{A}^{op}, \mathcal{V}](F, G) \cong [\mathcal{A}^{op}, \mathcal{V}](\operatorname{Lan}_{J^{op}} H, G) \cong [\mathcal{K}^{op}, \mathcal{V}](H, GJ^{op}),$$

which exists in \mathcal{V} since \mathcal{K} is small. Moreover the Yoneda embedding $Y : \mathcal{A} \to [\mathcal{A}^{op}, \mathcal{V}]$ factors through $\mathscr{P}\mathcal{A}$ since for each $a \in \mathcal{A}$ we have $\mathcal{A}(-, a) \cong H * \mathcal{A}(-, J_a)$, where $H = I : \mathcal{I}^{op} \to \mathcal{V}$ and $J_a : \mathcal{I} \to \mathcal{A}$ points to a (\mathcal{I} being the unit \mathcal{V} -category). As a consequence we can see \mathcal{A} as a full subcategory of $\mathscr{P}\mathcal{A}$, which is moreover cocomplete:

Proposition 5.2 ([Kel82]). $\mathscr{P}\mathcal{A}$ is closed in $[\mathcal{A}^{op}, \mathcal{V}]$ under small colimits.

Let us now fix a collection Φ of functors with small domains; a colimit with a weight from Φ will be called Φ -colimit. Our aim is to construct the free cocompletion of a category \mathcal{A} under Φ -colimits.

Definition 5.3. We say that a category \mathcal{C} is Φ -cocomplete if it has all Φ -colimits and that a functor $F : \mathcal{C} \to \mathcal{B}$ is Φ -cocontinuous if preserves them.

Given a category \mathcal{A} , consider the closure $\Phi(\mathcal{A})$ of \mathcal{A} in $\mathscr{P}\mathcal{A}$ under Φ -colimits and denote by $N : \mathcal{A} \to \Phi(\mathcal{A})$ the inclusion; then the following result holds.

Theorem 5.4. $\Phi(\mathcal{A})$ is the free Φ -cocompletion of \mathcal{A} ; i.e. $\Phi(\mathcal{A})$ is Φ -cocomplete and for each Φ -cocomplete \mathcal{C} the left Kan extension along N induces an equivalence

$$\operatorname{Lan}_N : [\mathcal{A}, \mathcal{C}] \longrightarrow \Phi\operatorname{-Coct}[\Phi(\mathcal{A}), \mathcal{B}]$$

with inverse [N, 1]. Moreover the inclusion $N : \mathcal{A} \to \Phi(A)$ is dense, with discrete presentation given by the family of all Φ -colimits.

Proof. First we prove that N is dense. To see that the family of all Φ -colimits is a discrete presentation for N we only need to prove that they are N-absolute (since $\Phi(\mathcal{A})$ is by definition the closure of \mathcal{A} under them). But $\tilde{N} : \Phi(\mathcal{A}) \to [\mathcal{A}^{op}, \mathcal{V}]$ is just the inclusion and hence preserves Φ -colimits by construction. As a consequence N is dense by Theorem 2.8. Now, $\Phi(\mathcal{A})$ is Φ -cocomplete by definition and Lan_N is fully faithful since:

$$[\Phi(\mathcal{A}), \mathcal{B}](\mathrm{Lan}_N F, \mathrm{Lan}_N G) \cong [\mathcal{A}, \mathcal{B}](F, (\mathrm{Lan}_N G)N) \cong [\mathcal{A}, \mathcal{B}](F, G)$$

where the first isomorphism is given by the universal property of Lan and the latter follows from $(\operatorname{Lan}_N G)N \cong G$ (N is fully faithful). Finally, by Corollary 3.2, for each Φ -cocontinuous $S : \Phi(\mathcal{A}) \to \mathcal{B}$ the identity id_{SN} exhibits S as $\operatorname{Lan}_N(SN)$; this shows that [N, 1] is a left-inverse for Lan_N which is thence an equivalence of categories. \Box

DENSE FUNCTORS AND DENSITY PRESENTATIONS

6. Absolutely Dense Functors

Let $N : \mathcal{A} \to \mathcal{C}$ be any dense functor; then Theorem 2.8 gives a canonical presentation for N and shows that the colimits involved $\tilde{N}c * N$ are N-absolute. In this section we consider those dense functors for which $\tilde{N}c * N$ are furthermore preserved by any functor.

Definition 6.1. A functor $N : \mathcal{A} \to \mathcal{C}$ is called **absolutely dense** if it is dense and all colimits $\widetilde{N}c * N, c \in \mathcal{C}$, are absolute, i.e. are preserved by any functor.

We can classify absolutely dense functors as follows:

Proposition 6.2. Given $N : \mathcal{A} \to \mathcal{C}$, the following are equivalent:

- (1) N is absolutely dense;
- (2) for any category \mathcal{B}

$$[N,1]: [\mathcal{C},\mathcal{B}] \longrightarrow [\mathcal{A},\mathcal{B}]$$

is fully faithful;

- (3) $[N^{op}, 1] : [\mathcal{C}^{op}, \mathcal{V}] \longrightarrow [\mathcal{A}^{op}, \mathcal{V}]$ is fully faithful;
- (4) for every $\varphi : \mathcal{C}^{op} \to \mathcal{V}$ and $F : \mathcal{C} \to \mathcal{B}$ the colimit $\varphi * F$ exists iff $(\varphi N^{op}) * (FN)$ exists and they are isomorphic.

Proof. (1) \Rightarrow (2). Let $F, G : \mathcal{C} \to \mathcal{B}$ be any pair of functors; since N is absolutely dense, by Corollary 3.2, $F \cong \text{Lan}_N(FN)$ and hence:

$$[\mathcal{C}, \mathcal{B}](F, G) \cong [\mathcal{C}, \mathcal{B}](\operatorname{Lan}_N(FN), G)$$
$$\cong [\mathcal{A}, \mathcal{B}](FN, GN)$$

by the universal property of Lan. Then [N, 1] is fully faithful.

(2) \Rightarrow (3). Take $\mathcal{B} = \mathcal{V}^{op}$ and then use $[N^{op}, 1] = [N, 1]^{op}$.

 $(3) \Rightarrow (1)$. N is dense since \widetilde{N} is the composite $[N^{op}, 1]Y$ and $[N^{op}, 1]$ is full and faithful by hypothesis. Moreover, for a fixed c in \mathcal{C} , any functor $F : \mathcal{C} \to \mathcal{B}$, and $b \in \mathcal{B}$ we have:

$$\mathcal{B}(\widetilde{N}c * (FN), b) \cong [\mathcal{A}^{op}, \mathcal{V}](\widetilde{N}c, \mathcal{B}(FN-, b))$$
$$\cong [\mathcal{A}^{op}, \mathcal{V}](\mathcal{C}(-, c)N^{op}, \mathcal{B}(F-, b)N^{op})$$
$$\cong [\mathcal{C}^{op}, \mathcal{V}](\mathcal{C}(-, c), \mathcal{B}(F-, b))$$
$$\cong \mathcal{B}(Fc, b)$$
$$\cong \mathcal{B}(F(\widetilde{N}c * N), b)$$

so that the colimits $\widetilde{N}c * N$ are absolute and hence N is absolutely dense.

 $(3) \Rightarrow (4)$. For any $b \in \mathcal{B}$ we have:

$$\mathcal{B}((\varphi N^{op}) * (FN), b) \cong [\mathcal{A}^{op}, \mathcal{V}](\varphi N^{op}, \mathcal{B}(FN-, b))$$
$$\cong [\mathcal{A}^{op}, \mathcal{V}](\varphi N^{op}, \mathcal{B}(F-, b)N^{op})$$
$$\cong [\mathcal{C}^{op}, \mathcal{V}](\varphi, \mathcal{B}(F-, b))$$
$$\cong \mathcal{B}(\varphi * F, b).$$

Then (4) follows.

(4) \Rightarrow (3). Taking as F the Yoneda embedding $Y : \mathcal{C} \rightarrow [\mathcal{C}^{op}, \mathcal{V}]$, (4) says that for each $\varphi : \mathcal{C}^{op} \rightarrow \mathcal{V}$ we have $\varphi \cong \operatorname{Lan}_{N^{op}}(\varphi N^{op})$. Thence we can conclude as in (1) \Rightarrow (2).

Functors satisfying property (3) of the last Proposition are called connected in [BV02] and are used to classify reflective and coreflective subcategories of presheaves:

Theorem 6.3 (3.11 in [BV02]). Let \mathcal{A} be a category and $J : \mathcal{K} \to [\mathcal{A}^{op}, \mathcal{V}]$ a full embedding of a reflective and coreflective subcategory (i.e. such that the inclusion Jhas both a left and a right adjoint). Then there exists $N : \mathcal{A} \to \mathcal{C}$ connected such that J is isomorphic to the embedding

$$[N^{op}, 1] : [\mathcal{C}^{op}, \mathcal{V}] \longrightarrow [\mathcal{A}^{op}, \mathcal{V}].$$

Proof. (Sketch). We are only going to show how to define $N : \mathcal{A} \to \mathcal{C}$. Let $L : [\mathcal{A}^{op}, \mathcal{V}] \to \mathcal{K}$ be the left adjoint of J and consider the functor E given by the composite

$$\mathcal{A} \xrightarrow{Y} [\mathcal{A}^{op}, \mathcal{V}] \xrightarrow{L} \mathcal{K},$$

then we can factorise it as E = E'N with $N : \mathcal{A} \to \mathcal{B}$ surjective on objects and $E' : \mathcal{B} \to \mathcal{K}$ fully faithful. One can prove that N is absolutely dense, hence connected, and $J \cong [N^{op}, 1]$.

References

- [BV02] R. Bashir and J Velebil. "Simultaneously Reflective and Coreflective Subcategories of Presheaves". In: *Theory and Applications of Categories, Vol. 10*, No. 16, (2002), pp. 410–423.
- [Day74] B.J. Day. "On Closed Categories of Functors II". In: Lecture Notes in Math. 420 (1974), pp. 20–54.
- [Day77] B.J. Day. "Density Presentations of Functors". In: Bulletin of the Australian Mathematical Society Vol. 16 (1977), pp. 427–448.
- [Die76] Y. Diers. "Type de densité d'une sous-catégorie pleine". In: Ann. Soc. Scient. Bruxelles 90 (1976), pp. 25–47.
- [Isb60] J. R. Isbell. "Adequate Subcategories". In: Illinois J. Math. 4 (1960), pp. 541– 552.
- [Kel82] G.M. Kelly. Basic Concepts of Enriched Category Theory. Cambridge University Press, 1982.
- [KS05] G.M. Kelly and V. Schmitt. "Notes on Enriched Categories with Colimits of Some Class". In: Theory and Applications of Categories, Vol. 14, No. 17 (2005), pp. 399–423.
- [ML71] S. Mac Lane. Categories for the Working Mathematician. Springer, 1971.
- [SW78] R. Street and R. Walters. "Yoneda Structures on 2-Categories". In: Journal of Algebra 50 (1978), pp. 350–379.
- [Ulm68] F. Ulmer. "Properties of Dense and Relative Adjoint Functors". In: Journal of Algebra 8 (1968), pp. 77–95.