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ABSTRACT. Dense functors in ordinary and additive categories have been considered

especially by Isbell [Isb60], Ulmer |[Ulm68| and Diers [Die76]. In the more general
context of enriched categories they were treated by Kelly [Kel82] and Day |[Day74];
moreover in [Day77] the notion of density presentation was defined and developed.

After introducing some notations and our background settings, we outline in sections
2 and 3 the most important features of density presentation following both
and [Kel82]. In the remaining sections we apply the preceding results in the context
of monads, free cocompletions and reflective and coreflective subcategories.
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1. NOTATIONS AND BACKGROUND

We fix here a complete and cocomplete symmetric monoidal closed category V =
(Vo, I, ®) as our base for enrichment. All notions should be understood as V-enriched,
so for example by saying category and functor we really mean V-category and V-functor.

We also allow all our categories to be large, unless specified otherwise. An unfortu-
nate consequence of this is that, given A, the presheaf category [A°?, V] may not exist
as V-enriched category. We can avoid this problem considering [A%, V] as a V'-category

for some extension V' of V (see |[Kel82|); this allows us to still work with them.
1
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We shall often use the notion of weighted colimit (and limit): given functors ¢ :
KP — YV and F : L — C, the colimit of F' weighted by ¢, if it exists in C, is denoted
by ¢ * F' and satisfies

Clp* F,c) = [K7, V](p,C(F—, )

naturally in ¢ € C. When K is not small (as is possible in our setting) this means that
[P V]|(p,C(F—,c)) exists as an element of V for each ¢ € C and ¢ * F satisfies the
above condition.

Given a category C, we denote by |C| the discrete category on C; this has the same
objects of C but its hom-objects are C(c,d) := 0 the initial object of V, for each
c#deC,and C(c,c) :=1I.

More generally, given an ordinary locally small category £, we’ll consider the free V-
category Ly over L; it has the same objects of £ but hom-objects given by Ly (I, m) :=
L(l,m) - I the coproduct of L(I, m) copies of I in V.

Since our main topic will be dense functors, we shall make use of the following
notations: for any functor N : A — C denote by N the composite:

- Y (NP, 1]
N:¢c —— " V] —— [A7)V]
c ----- » C(—,¢) ----- » C(N—,¢)
and, for J : K — A:
~ Y’ [J:1]
J: AP —— ["47 V] I [’C,V]
@ s Ao, =) o Afa, o)

where Y and Y are respectively the covariant and controvariant Yoneda embeddings.
These are also known as C(N,1) and A(1, J) respectively (see [SW7§| for instance),
but we prefer the more compact notation N and J.

Next we recall the definition and some of the main properties of left Kan extensions.

Definition 1.1 ([Kel82]). Given N : A — C and F': A — B, the left Kan extension of
F along N is a functor G : C — B together with a natural transformation ¢ : FF — GN
such that for each H : C°? — V), ¢ induces an isomorphism

HN?®? x« F — H xG.
We denote the left Kan extension of F' along N by Lany F; it is easy to see that this

exists iff the colimits Nec x F exist in B for each ¢ € C, and in that case is given by
LanyF' = N(—) x F. The following universal property is a consequence of definitions:

Theorem 1.2. Given N : A — C and F : A — B, if (Lany F, ¢) exists then ¢ induces
a natural isomorphism

C, B)(Lany F, S) = |A, B|(F, SN)
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forany S:C — B.

2. DENSE FUNCTORS AND PRESENTATIONS

We start this section with the definition of dense functor; this is probably the easiest
one but at the same time the least intuitive. Other equivalent ways of defining them
will be given later.

Definition 2.1. A functor N : A — C is called dense if N : C — [A%,V)] is fully
faithful.

Now, given categories A, B and C, denote by A-Coct|C, B] the full subcategory of
[C, B] of those functors preserving all existing colimits ¢ * G with weight ¢ : A? — V.

The following Proposition gives a first characterization of dense functors and also a
more intuitive way of thinking about them.

Proposition 2.2. Given N : A — C, the following facts are equivalent:
(1) N is dense;
(2) for each B, precomposition with N induces a fully faithful functor
[N, 1] : A-Coct[C, B] — [A, B];
(3) idy exhibits 1¢ as LanyN.

Proof. (2) = (1). Consider the Yoneda embedding Y : C — [C°?, V] =~ [C, V°P|°P; since
representables are continuous, Y lands in (A-Coct[C, V?P])°P. To conclude then note
that N = [N, 1] o Y; thus, by (2), it is full and faithful.

(1) = (3). By hypothesis for each ¢ and d in C,

Nog : C(e,d) —s [A”,V]|(N¢, Nd) = C(Ne* N, d)

is invertible. As a consequence ¢ = Nex N , where the isomorphism is induced by the
identity map idg, : Nc¢ — Nec. Then (3) follows.

(3) = (2). Let B be any category and F' : C — B an A-cocontinuous functor; then
F(Nex N) 2 Nex FN for each ¢ in C, i.e. Lany(FN) 2 F(LanyN) 2 F. Then by
the universal property of the left Kan extension we get for each S : C — B:

C,BI(F,S) = [C, B)(Lany (FN), S) 2 [A, B|(FN, SN)

the isomorphism being given by [N, 1]pg. It follows then that the restriction of [N, 1]
to A-Coct[C, B is fully faithful. O

If N is fully faithful, condition (2) says exactly that a full subcategory A of C is
dense iff A-cocontinuous functors with domain C are determined by their restriction to
A; this evidently calls to mind the more common notion of topological density between
subspaces.

Dense functors which are also fully faithful can be characterized this way:
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Proposition 2.3. A category C is equivalent to a full subcategory of a presheaf category
[A? V] containing the representables iff there is a fully faithful and dense functor
N:A—C.

Proof. On one side, let J : C — [A°, V] be the inclusion; then, since C contains the
representables, we can consider as N the codomain restriction of the Yoneda embedding
Y A — [A% V] It’s casy to see that J = N, hence N is dense and fully faithful.

On the other hand, if N is fully faithful and dense then NN =Y : A — [A?, V] so
that C contains the representables. 0

Proving that a given functor is dense using one of the three equivalent conditions
above may be rather hard; this is where the notion of density presentation comes to
help. The following definition was introduced and developed by Day in [Day77].

Definition 2.4. A presentation for N : A — C is given by a quadruple (K, J, ¢, &)
with elements: a category K, an index functor J : K — A, a coefficient functor
v : K?® |C| — V such that ¢(—,c) * NJ exists in C for each ¢, and a morphism
& p(—,¢)* NJ — ¢ for each c € C.

Recall that |C| is the discrete category on C; thus, the coefficient functor ¢ is just a
collection of functors ¢, := ¢(—,c) : K — V for each object ¢ of C.

Given a presentation P = (I, J, p,§); for each ¢ € C and a € A there is an induced
map E.q @ Qe * Ja — C(Na,p.* NJ) in V defined as the composite:

can

Do * Ja = e x Ala, J—) g(ﬂycpc*C(Na,NJ—) — C(Na, . * NJ);

where can denotes the canonical comparison expressing the extent to which C(Na, —)
preserves the colimit ¢, x N.J. For each ¢ in C, this gives a natural transformation
€ pex J(=) = N(ge* NJ) in [A%, V).

Note moreover that P induces the following isomorphisms in V for each ¢, d € C:

I

Clpe*x NJ,d) = [KP,V]|(pe, C(NJ—,d))

I

K V) (pe—, [AP, V|(A(D, J-),C(NO,d)))
I
I

12

(1)

12

K V](ge, [A, V](J, Nd))
AP V(g * J, Nd)

1%

[
[
[
[

where recall that N = C(N, —) and J = A(—, J). We also point out that the composite
of all the isomorphisms in (1)) is given by

N _ _ A7V Na) S
Clpe * NJ,d) — [AP V|(N(pe * NJ), Nd) = [A”, V](pc * J, Nd)
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Of course, to get information about the density of N, a presentation P = (I, J, ¢, £)
like in the previous definition is not enough. The existence of such a P only guarantees
that for each ¢ € C a certain colimit with values in the image of A exists in C and is in
some way connected to the object ¢ through &, and &,.

In order to obtain the density of NV from such a presentation we need to ask for some
properties of these connecting morphisms &, and &,

Definition 2.5. Let (K, J, ¢, &) be a presentation for N : A — C; we say that it is a:

e generating presentation if £. is an epimorphism for each ¢ € C;

e density presentation if &, is a regular epimorphism, and C(Na, &,) and ., are
epimorphisms for each ¢ € C and a € A,

e strict presentation if both &. and f_c,a are isomorphisms for each ¢ € C and

a € A.

A direct consequence of this definition is the following result:

Proposition 2.6. Let P := (K, J, ¢, &) be a presentation for N; then:

(a) if P is generating, then N is faithful;
(b) if P a density presentation, then N is dense;
(c) if P is strict, then N is dense and for each c € C and G : A — V),

[A% V](Nec,G) = [K?,V](ge, GJ).
Proof. (a). For each ¢,d in C consider the commutative diagram:

Cgmd = ~ ~
Cle,d) (€9 Clpe* NJ,d) «— [A® V](p. x J, Nd)

NCd N [A0p7 V] (gcv Nd)

[AOP,V](N(@C * NJ),Nd)

(A V](Ne, Nd) ——
[A°7, V](NE., Nd)

(the triangle commutes by . Since &, is by assumption an epimorphism, C(&.,d) is a
monomorphism. As a consequence ch is a monomorphism too and hence N is faithful.

(b). Suppose now that (K, J, p, £) is a density presentation. Consider for each b,d € C
the isomorphism

N ~ - AP V)&, Nd) ~ <
C(op* NJ,d) — [AP V](N(gp * NJ),Nd) —————— [A?, V](¢y * J, Nd)

then [A%, V](&, N d) is a split epimorphism, but it also is a monomorphism (since &,
is epi) and hence is invertible. As a consequence N : C(pp * NJ,d) — [A%?, V]|(N(pp *
NJ), Nd) is itself an isomorphism.
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Now fix ¢,d in C as before; by hypothesis £, is a regular epimorphism, i.e. is the
coequalizer of two maps u,v : e — (. * NJ). Precomposing u and v with &, (which is
also a regular epimorphism) we get &. as the coequalizer of uo &, v o0& : p.*x NJ —
e * NJ. Consider now the previous diagram completed with u, v and &,.:

() Cluoé,d)
C(c,d) C(pe* NJ,d) C(pe * NJ,d)
C(vo{e,d)

ch

1%
1%

(A%, V](Ne, Nd) == [AP, V](N (e * NJ), Nd) —= [A, V](N(p. * NJ), Nd)
where the two vertical arrows in the right square are isomorphisms by the previous
argument and mqy = [A"p,l/](ﬁ7 &, Nd) is a monomorphism since by hypothesis N¢.
is an epimorphism. Note moreover that C(&.,d) is the equalizer of C(u o &, d) and
C(voé,,d) since C(—,d) transforms colimits into limits; this and the commutativity of
the diagram imply that there exists r : [A%, V](Nc, Nd) — C(c,d) such that C(&.,d) o
r = meg. Then, using that m.g is monomorphism, it is easy to see that r is a right
inverse of ch. Hence ch is a split epimorphism; by (a) it is also a monomorphism
and hence is invertible; this means exactly that /N is dense.

(¢). Fix ¢in C and G : A? — V; then:

(14

[A% V](Ne,G) = [A%, V](N (. * NJ),G)

[re

(AP V(e + T.Q)
= [’Copa V](QOC, [Aop’ V](j_7 G))
(K, V](¢e, GJ).

I

O

When N is fully faithful we can also consider another notion of presentation which
appears for example in Section 5 of [Kel82].

Definition 2.7. Let N : A — C be fully faithful; a discrete presentation for N is
a (not necessarily small) family (K., F, : K? — V; P, : K, — A),er such that the
colimit F., x NP, exists in C for each v and is N-absolute (i.e. is preserved by N ), and
C is the closure of A under this family of colimits.

Note that, given a strict presentation of a fully faithful IV, the fact that & and £,
are invertible says exactly that the colimits . *x N.J are preserved by N and hence are
N-absolute.
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The following Theorem connects Day’s notion of presentation with that just intro-
duced by proving that when N is a full inclusion there is no difference between them.
Theorem 2.8. Given N : A — C, the following are equivalent:

(1) N is dense;
(2) N has a strict presentation.

If moreover N is fully faithful, they are further equivalent to:

(3) N has a discrete presentation.

Proof. (1) = (2). It is enough to consider the presentation P = (K, J, ¢,£) with
K:=A, J:=idg, p.:= Ne and & = Ncs N =3 ¢. Then £.q is also invertible since

¢ * Aa, J—) = Nex Aa, —) = C(Na,c) 2 C(Na,Nc N) = C(Na, g, * NJ).

Thus P is a strict presentation.
(2) = (1). Follows directly from the preceding Theorem.
(2) = (3). Given P = (K, J, ¢, &) strict, it is enough to consider the family

(ICC = ’C;Fc = SOC;PC = J)ce(,"

Indeed, the closure of A under F, x NP, is C since ¢ = ¢, x NJ = F,x NP, for each ¢
(P is strict); moreover these colimits are N-absolute:

£e ~ ~
N(pe* NJ) =C(N—,p.* NJ) Z . % J = @.x N(NJ),

where the last holds since N is fully faithful.

(3) = (2). Consider a family as in (3); then for each ¢ € C there exists 7. € T’
such that ¢ =2 F, « NP, (%) and N(Fw « NP, )= F, * NNP% (%2). Define a strict
presentation P = (K, J, p, &) by:

K= ZIC%,

ceC

J = (Py)ecc : K= A

and @, := (Ya)a : K — V, where ¢4 : KF — V are defined as

F, d=c

Va = { 0 d#c
Condition (k) defines & and together with (x9) assures that the presentation P so
defined is strict. O
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3. LEFT KAN EXTENSIONS AND ADJOINTS

We are now going to see some properties implied by strict density presentations.
Let us fix henceforth N : A — C (not necessarily fully faithful) and a strict presentation
,P - (lC7 J7 <l07 é)'

Proposition 3.1. For each G : A — B, if p.x GJ exists in B then p.x GJ = NexG
for each ¢ € C and LanyG : C — B exists.

Proof. Let Y : B? — [B,V)] be the Yoneda embedding; since Y is fully faithful and
transforms colimits of B into limits, it is enough to prove that Y (¢.*GJ) = {Nc, Y G}
(this implies that N¢* G exists in B and is ¢. * GJ). Let then b € B:

{Ne,YG}b) = {N¢, B(G—,b)}
[A” V](Ne¢, B(G—,b))

§

15 1

[’Cop7 V] (QDC, B(GJ_> b))
= {pe, YGT}H(D).

Hence {Ne,YG} = {0, YGJ} = Y(p, * GJ) as desired. About the existence of
LanyG, it follows since LanyG(c) is defined as Ne* G and this exists by the previous
argument. ([l

Corollary 3.2. Given F' : C — B, idpy exhibits F' as Lany(FN) iff F preserves
we* NJ for each ¢ in C.

Proof. We have Fc = F(p.*N.J) through F&, and Lany(FN) 2 Ncx FN = g« FN.J
by the previous Proposition applied to FN. It follows that F¢ = Lany(FN)c iff F
preserves @, x N J. 0

We are now going to see how strict presentations are related to adjoints.

Definition 3.3. Let R: B—-C, N: A— C and F : A — B, we say that F is a left
N-adjoint of R (and R is a right N-adjoint of F'), written F' 4y R, if for each a € A
and b€ B

B(Fa,b) = C(Na, Rb)

naturally in a and b.

Proposition 3.4. Let P be a strict presentation for N : A — B. Then:

(1) F:C — B has a right adjoint iff it preserves o, * NJ for each ¢ € C and FN
has a right N-adjoint.
(2) If F Ay R: B — C and p.x F'J exists in B for each ¢, then R has a left adjoint.
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Proof. (1). Suppose that F' preserves . * NJ and FN Ay R : B — C. Then, by
Corollary , F = Lany(FN), i.e. Fec = Nex FN for each ¢. As a consequence
FAR:
B(Fe,b) = B(Nc FN,b)
= [A0p7 V](j\v]cv B(FN_7 b))
~ [A%? V](Nc,C(N—, Rb)) (FN -y R)
=~ C(¢, Rb) (N dense)
Vice versa, let R : B — C be a right adjoint for F'; then F' preserves all colimits and by
adjointness B(F'Na,b) = C(Na, Rb). In particular F' preserves p.* NJ and FN -y R.
(2). Let F': C — B be defined as Fc:= ¢, * F'J; then:
B(Fe,b) = B(p. x FJ,b)
= [ICOp7 V](QOC, B(FJ_7 b))
=~ [K? V](¢.,C(NJ—, Rb)) (F -y R)
=~ C(pe* NJ, Rb) = C(c, Rb).

Note that a priori F is not well defined (since ¢, is discrete on ¢ € C), but as a
consequence of these isomorphisms it becomes an actual functor F : C — B. U

The following is the main theorem of this section, it explains in which circumstances
an N-adjunction induces an equivalence of categories. We are going to see a direct
application of this in the next section.

Theorem 3.5. Let P be a strict presentation for N : A — C. Suppose that F -y R :
B — C and let F - R be given with Fc = o, x F.J. Then:

(1) If R is conservative, preserves pry * F'J for each b € B, and N = RF, then R
15 fully faithful and F' is dense.

(2) R is an equivalence (with inverse F ) iff it is conservative, preserves p.x F.J for
each c € C and N = RF.

Proof. (1). By hypothesis F' 4 R; thus for each b € B we can consider the counit of
the adjunction F'Rb — b which, together with R, induces the following isomorphisms:
RFRb = R(pry* FJ) (def of F)
= opyx RFJ  (by 1)

>~ Rb (strict presentation)
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But R is conservative, thence the counit F Rb — b is an isomorphism; as a consequence
R is fully faithful. Finally to see that F' is dense, it is enough to consider the presen-
tation (IC, J,¢', &) with IC and J as before, ¢} := ¢pg, and & := £gp. This is a strict
presentation since the original one was; thus F' is dense by Proposition

(2). Suppose first that R is an equivalence; note that in this case the left N-adjoint
F can be defined simply as R~'N and F as R~'. The only non trivial thing to prove
is that N = RF. This is true iff FN = F (because F' = R™!), but F 4 R and F -y R
imply B(FNa,b) = C(Na, Rb) = B(Fa,b) for each b € B and thus F'Na = Fa.
Vice versa if R is conservative, preserves ¢, * F'J and N = RF, by point (1) we only
need to prove that RF = ide. Let ¢ € C; then ¢ = 0. x NJ = .+ RFJ = R(p * F.J) =
RFec. O

4. BECK’S THEOREM

In this section we are going to apply Theorem in the context of monads to get a
proof of Beck’s theorem on monadic adjunctions.

Let (T, p1,m) be a monad in V-Cat, where T : C — C is a functor, pu : T? — T is the
multiplication and 7 : idec — T the unit. Consider the Eilenberg-Moore category CT
of T-algebras whose objects are algebras (¢, : Tec — ¢) in C and the hom-objects are
defined as the equalizer

C(Ce,d)

CT((e,C.), (d Ca) —— Cle d) C(Te.d)
C(Tc¢,Ca) 0 Teq

Inside CT we consider the Kleisli category Cr with objects free T-algebras, i.e. alge-
bras of the form (7'c, p.) for some ¢ € C.

Let N : Cr — CT be the inclusion; we are going to show that N is dense by
constructing a strict presentation. Before that, we first need to recall a general fact
about algebras:

Proposition 4.1 ([ML71]). For any T-algebra (c,¢) in CT, { : Tc — c is the split
coequalizer in C of p. and TC with splitting maps T2c <%= Te < ¢. In particular  is
an absolute coequalizer, i.e. it is preserved by each functor G : C — B.

Consider now the free V-category D over the ordinary category

m
{2 —=1};
S
and define a strict presentation for N as follows: K := D ® CT, the index functor
J : I — Crp is such that:

Ji,—)=ct e e Lo,
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where U7 is the forgetful functor, J is the canonical functor sending ¢ to (Tc, 1) and
i =1,2.
On the other side, given ¢ = (¢, () in CT, set

J(m,c) = p. : T*c — Tc;

J(s,c) :=T¢:T?c — Tc.

The coefficient functor ¢ : K ® |[CT| — V is defined as the composite

™D (-, |-
K7 & |CT| = D& CT @ |C7| —2 ¢ g o7 170, 5,

Finally, let ¢ = (¢, () be an object of CT; then set & to be the isomorphism:

Pe * NJ = CdOé%n((p(d, ) C) * NJ(da _>>

= colim(C"(—,¢) *x NJ(d,—))

deD
colimN J(d, c)
deD

12

2

coeq(fie, T'C)
=c (b

We have just defined a presentation for N, to see that it is strict note that for each a
in CT,
P x Ja ™ g xCT(Na, NJ—) = CT(Na, pe * N.J)

since N is fully faithful and the coequalizer . * NJ is absolute. This means exactly
that & is also invertible for each ¢ € CT and a € Crp; ie. (K,J, ¢, &) is a strict
presentation.

An immediate consequence of this is that the inclusion N : C; — CT is dense;
moreover we can apply Theorem to get:

Theorem 4.2 (Beck). An adjunction L 4 R : B — C is monadic iff R is conservative
and creates coequalizers of R-split pairs (i.e. of those pairs (f,q) such that (Rf, Rg)
has a split coequalizer in C).

Proof. One direction is done in the usual way and can be found for example in [ML71].
For the other direction, suppose that R is conservative and creates coequalizers of R-
split pairs. Let (T' = RL, = ReL,n) be the monad induced by the adjunction (n
and e are respectively the unit and counit); then the previous argument gives a strict
presentation (K, J, ¢, &) for the inclusion N : Cr — CT.

Let K : B — CT be the comparison functor defined on objects by Kb = (Rb, Re;,) € CT;
to apply Theorem we need to find, among the other things, an ordinary left adjoint
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and a left N-adjoint to K. Let UT : CT — C be the forgetful functor; define then
F : CT — B as the coequalizer
(0%
LRLUT — S LUT —— F
eLU"

where « is defined on components ¢ = (¢,¢) € CT as o, := L{ : LRLc — Lc. Note
that this coequalizer exists in [CT, B] since for each (c,() € CT the pair (L(,er.) is
R-split (by and R creates coequalizers of such pairs. Then F' - K; indeed for each
c = (¢,¢) € CT and b € B we have:

B(Fc,b) = B(coeq(L(,eLc),b)
= eq(B(L¢,b), B(eLc, b))
>~ oq(C(C, Rb),C(RLe, Reb) o RL) (L4 R)
=C"(c, Kb);

As a consequence F'N -y R and, since K'F = ider by construction, N = K(FN).
Moreover K is conservative and preserves the colimits ¢.x F'NJ = coeq(F ., FT() for
each ¢ = (¢, () € CT since R does; hence we can apply Theorem (2) and get that K
is an equivalence. 0]

5. FREE COCOMPLETIONS

Here we apply the theory of density presentations to get information on the free
cocompletions of categories under a certain class of colimits. The results we show are
taken from [Kel82], but a more detailed treatment of such cocompletions and their
properties can be found in [KS05|.

Given a category A, it’s reasonable to look for its free cocompletion (under a class
of colimits) in the category of presheaves A%, V)] like it happens in the ordinary case.
The problem is that we want the free cocompletion to be a V-category like A, but
[A° V] may not be (as we said in section 1). To avoid this, instead of considering all
presheaves we can restrict ourselves to the small ones:

Definition 5.1. Let A be a category; a presheaf F' : A? — V is called small if there
exists a small K and a functor J : K — A such that F' = Lan; H = H % A(—, J) for
some H : K? — V. Denote by ZA the full subcategory of [A° V] whose objects are
small functors.

It is interesting to note (Proposition 4.83 in |[Kel82]) that if F': A — V is small the
functor J in the definition can be chosen to be fully faithful, so that F'is the left Kan
extension of its restriction to a small full subcategory of A.
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As we anticipated, the category & A of small presheaves is a V-category: for each
F small and any G (using the universal property of Lan) we have

(AP V|(F,G) = [A? V](Lans» H, G) = [P, V|(H,GJ?),

which exists in V since K is small. Moreover the Yoneda embedding Y : A — [A%, V)]
factors through £ A since for each a € A we have A(—,a) = H % A(—,J,), where
H=1:7I° -V and J, : T — A points to a (Z being the unit V-category). As a
consequence we can see A as a full subcategory of &2 A, which is moreover cocomplete:

Proposition 5.2 ([Kel82]). LA is closed in [AP, V] under small colimits.

Let us now fix a collection ® of functors with small domains; a colimit with a weight
from ® will be called ®-colimit. Our aim is to construct the free cocompletion of a
category A under ®-colimits.

Definition 5.3. We say that a category C is ®-cocomplete if it has all ®-colimits and
that a functor F': C — B is ®-cocontinuous if preserves them.

Given a category A, consider the closure ®(A) of A in #A under ®-colimits and
denote by N : A — ®(A) the inclusion; then the following result holds.

Theorem 5.4. (A) is the free ®-cocompletion of A; i.e. ®(A) is ®-cocomplete and
for each ®-cocomplete C the left Kan extension along N induces an equivalence

Lany : [A,C] — ®-Coct[®(A), B]

with inverse [N,1]. Moreover the inclusion N : A — ®(A) is dense, with discrete
presentation given by the family of all ®-colimits.

Proof. First we prove that N is dense. To see that the family of all ®-colimits is a
discrete presentation for N we only need to prove that they are N-absolute (since ®(.A)
is by definition the closure of A under them). But N : ®(A) — [A%, V)] is just the
inclusion and hence preserves ®-colimits by construction. As a consequence N is dense
by Theorem [2.8, Now, ®(.A) is ®-cocomplete by definition and Lany is fully faithful
since:

[®(A), B](Lany F, LanyG) = [A, B](F, (LanyG)N) = [A, B|(F, G)

where the first isomorphism is given by the universal property of Lan and the latter
follows from (LanyG)N = G (N is fully faithful). Finally, by Corollary [3.2] for each
d-cocontinuous S : (A) — B the identity idgy exhibits S as Lany(SN); this shows
that [V, 1] is a left-inverse for Lany which is thence an equivalence of categories. [
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6. ABSOLUTELY DENSE FUNCTORS

Let N : A — C be any dense functor; then Theorem 2.§ gives a canonical presentation
for N and shows that the colimits involved Nc¢ * N are N-absolute. In this section we
consider those dense functors for which Nc¢ x N are furthermore preserved by any
functor.

Definition 6.1. A functor N : A — C is called absolutely dense if it is dense and
all colimits Ncx N, ¢ € C, are absolute, i.e. are preserved by any functor.

We can classify absolutely dense functors as follows:

Proposition 6.2. Given N : A — C, the following are equivalent:

(1) N is absolutely dense;
(2) for any category B
[N7 1] : [678] — ["4’ B]
15 fully faithful;
(3) [N, 1] : [CP, V] —> [AP, V)] is fully faithful;
(4) for every ¢ : C? =V and F : C — B the colimit o x F exists iff (oN)* (FN)
exists and they are isomorphic.

Proof. (1) = (2). Let F,G : C — B be any pair of functors; since N is absolutely
dense, by Corollary [3.2] F' = Lany(FN) and hence:

[C,B](F,G) = [C,B](Lany(FN),G)
~ [A, B|(FN, GN)

by the universal property of Lan. Then [N, 1] is fully faithful.

(2) = (3). Take B =V and then use [N, 1] = [N, 1]°.

(3) = (1). N is dense since N is the composite [N°?,1]Y and [N°,1] is full and
faithful by hypothesis. Moreover, for a fixed ¢ in C, any functor F' : C — B, and b € B
we have:

[A” V](Ne¢, B(FN—,b))
[A V](C(—, c)NP, B(F—,b)N°)
= [C?VI(C(—, ), B(F—,b))

= B(Fec,b)

>~ B(F(Ncx N),b)

2

B(Ncx (FN),b) =

P

1%

so that the colimits Nc* N are absolute and hence N is absolutely dense.
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(3) = (4). For any b € B we have:

B((¢N?)x (FN),b) = [A”", V](eN?, B(FN—,b))
[A%, V(N B(F—,b)N*)
[C V](¢, B(F—, b))
= B(p * F,b).

IIZ

I

Then (4) follows.
(4) = (3). Taking as F' the Yoneda embedding Y : C — [C°?, V)], (4) says that for
each ¢ : C? — V we have ¢ = Lanyor (9 N°). Thence we can conclude as in (1) = (2).
U

Functors satisfying property (3) of the last Proposition are called connected in [BV02]
and are used to classify reflective and coreflective subcategories of presheaves:

Theorem 6.3 (3.11 in [BV02]). Let A be a category and J : K — [A®. V] a full
embedding of a reflective and coreflective subcategory (i.e. such that the inclusion J
has both a left and a right adjoint). Then there exists N : A — C connected such that
J 1s isomorphic to the embedding

[N 1] [CP, V] — [A7,V)].

Proof. (Sketch). We are only going to show how to define N : A — C. Let L :
[A? V] — K be the left adjoint of J and consider the functor E given by the composite

AL jar V] L K

then we can factorise it as £ = E'N with N : A — B surjective on objects and
E' . B — K fully faithful. One can prove that N is absolutely dense, hence connected,
and J = [N 1]. O
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