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Abstract. Dense functors in ordinary and additive categories have been considered

especially by Isbell [Isb60], Ulmer [Ulm68] and Diers [Die76]. In the more general

context of enriched categories they were treated by Kelly [Kel82] and Day [Day74];

moreover in [Day77] the notion of density presentation was defined and developed.

After introducing some notations and our background settings, we outline in sections

2 and 3 the most important features of density presentation following both [Day77]

and [Kel82]. In the remaining sections we apply the preceding results in the context

of monads, free cocompletions and reflective and coreflective subcategories.
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1. Notations and Background

We fix here a complete and cocomplete symmetric monoidal closed category V =

(V0, I,⊗) as our base for enrichment. All notions should be understood as V-enriched,

so for example by saying category and functor we really mean V-category and V-functor.

We also allow all our categories to be large, unless specified otherwise. An unfortu-

nate consequence of this is that, given A, the presheaf category [Aop,V ] may not exist

as V-enriched category. We can avoid this problem considering [Aop,V ] as a V ′-category

for some extension V ′ of V (see [Kel82]); this allows us to still work with them.
1
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We shall often use the notion of weighted colimit (and limit): given functors ϕ :

Kop → V and F : K → C, the colimit of F weighted by ϕ, if it exists in C, is denoted

by ϕ ∗ F and satisfies

C(ϕ ∗ F, c) ∼= [Kop,V ](ϕ, C(F−, c))

naturally in c ∈ C. When K is not small (as is possible in our setting) this means that

[Kop,V ](ϕ, C(F−, c)) exists as an element of V for each c ∈ C and ϕ ∗ F satisfies the

above condition.

Given a category C, we denote by |C| the discrete category on C; this has the same

objects of C but its hom-objects are C(c, d) := 0 the initial object of V0 for each

c 6= d ∈ C, and C(c, c) := I.

More generally, given an ordinary locally small category L, we’ll consider the free V-

category LV over L; it has the same objects of L but hom-objects given by LV(l,m) :=

L(l,m) · I the coproduct of L(l,m) copies of I in V0.

Since our main topic will be dense functors, we shall make use of the following

notations: for any functor N : A → C denote by Ñ the composite:

Ñ : C [Cop,V ] [Aop,V ]

c C(−, c) C(N−, c)

Y [Nop, 1]

and, for J : K → A:

Ĵ : Aop [A,V ] [K,V ]

a A(a,−) A(a, J−)

Y ′ [J, 1]

where Y and Y ′ are respectively the covariant and controvariant Yoneda embeddings.

These are also known as C(N, 1) and A(1, J) respectively (see [SW78] for instance),

but we prefer the more compact notation Ñ and Ĵ .

Next we recall the definition and some of the main properties of left Kan extensions.

Definition 1.1 ([Kel82]). Given N : A → C and F : A → B, the left Kan extension of

F along N is a functor G : C → B together with a natural transformation φ : F → GN

such that for each H : Cop → V , φ induces an isomorphism

HN op ∗ F −→ H ∗G.

We denote the left Kan extension of F along N by LanNF ; it is easy to see that this

exists iff the colimits Ñc ∗ F exist in B for each c ∈ C, and in that case is given by

LanNF = Ñ(−) ∗ F . The following universal property is a consequence of definitions:

Theorem 1.2. Given N : A → C and F : A → B, if (LanNF, φ) exists then φ induces

a natural isomorphism

[C,B](LanNF, S) ∼= [A,B](F, SN)
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for any S : C → B.

2. Dense Functors and Presentations

We start this section with the definition of dense functor; this is probably the easiest

one but at the same time the least intuitive. Other equivalent ways of defining them

will be given later.

Definition 2.1. A functor N : A → C is called dense if Ñ : C → [Aop,V ] is fully

faithful.

Now, given categories A,B and C, denote by A-Coct[C,B] the full subcategory of

[C,B] of those functors preserving all existing colimits ϕ ∗G with weight ϕ : Aop → V .

The following Proposition gives a first characterization of dense functors and also a

more intuitive way of thinking about them.

Proposition 2.2. Given N : A → C, the following facts are equivalent:

(1) N is dense;

(2) for each B, precomposition with N induces a fully faithful functor

[N, 1] : A-Coct[C,B]→ [A,B];

(3) idN exhibits 1C as LanNN .

Proof. (2)⇒ (1). Consider the Yoneda embedding Y : C → [Cop,V ] ' [C,Vop]op; since

representables are continuous, Y lands in (A-Coct[C,Vop])op. To conclude then note

that Ñ = [N, 1]op ◦ Y ; thus, by (2), it is full and faithful.

(1)⇒ (3). By hypothesis for each c and d in C,

Ñcd : C(c, d) −→ [Aop,V ](Ñc, Ñd) ∼= C(Ñc ∗N, d)

is invertible. As a consequence c ∼= Ñc ∗N , where the isomorphism is induced by the

identity map idÑc : Ñc→ Ñc. Then (3) follows.

(3) ⇒ (2). Let B be any category and F : C → B an A-cocontinuous functor; then

F (Ñc ∗ N) ∼= Ñc ∗ FN for each c in C, i.e. LanN(FN) ∼= F (LanNN) ∼= F . Then by

the universal property 1.2 of the left Kan extension we get for each S : C → B:

[C,B](F, S) ∼= [C,B](LanN(FN), S) ∼= [A,B](FN, SN)

the isomorphism being given by [N, 1]FS. It follows then that the restriction of [N, 1]

to A-Coct[C,B] is fully faithful. �

If N is fully faithful, condition (2) says exactly that a full subcategory A of C is

dense iff A-cocontinuous functors with domain C are determined by their restriction to

A; this evidently calls to mind the more common notion of topological density between

subspaces.

Dense functors which are also fully faithful can be characterized this way:



4 DENSE FUNCTORS AND DENSITY PRESENTATIONS

Proposition 2.3. A category C is equivalent to a full subcategory of a presheaf category

[Aop,V ] containing the representables iff there is a fully faithful and dense functor

N : A → C.

Proof. On one side, let J : C → [Aop,V ] be the inclusion; then, since C contains the

representables, we can consider as N the codomain restriction of the Yoneda embedding

Y : A → [Aop,V ]. It’s easy to see that J ∼= Ñ , hence N is dense and fully faithful.

On the other hand, if N is fully faithful and dense then ÑN ∼= Y : A → [Aop,V ] so

that C contains the representables. �

Proving that a given functor is dense using one of the three equivalent conditions

above may be rather hard; this is where the notion of density presentation comes to

help. The following definition was introduced and developed by Day in [Day77].

Definition 2.4. A presentation for N : A → C is given by a quadruple (K, J, ϕ, ξ)
with elements: a category K, an index functor J : K → A, a coefficient functor

ϕ : Kop ⊗ |C| → V such that ϕ(−, c) ∗ NJ exists in C for each c, and a morphism

ξc : ϕ(−, c) ∗NJ → c for each c ∈ C.

Recall that |C| is the discrete category on C; thus, the coefficient functor ϕ is just a

collection of functors ϕc := ϕ(−, c) : Kop → V for each object c of C.
Given a presentation P = (K, J, ϕ, ξ); for each c ∈ C and a ∈ A there is an induced

map ξ̄c,a : ϕc ∗ Ĵa→ C(Na, ϕc ∗NJ) in V defined as the composite:

ϕc ∗ Ĵa = ϕc ∗ A(a, J−)
ϕc∗N−→ ϕc ∗ C(Na,NJ−)

can−→ C(Na, ϕc ∗NJ);

where can denotes the canonical comparison expressing the extent to which C(Na,−)

preserves the colimit ϕc ∗ NJ . For each c in C, this gives a natural transformation

ξ̄c : ϕc ∗ Ĵ(−)→ Ñ(ϕc ∗NJ) in [Aop,V ].

Note moreover that P induces the following isomorphisms in V for each c, d ∈ C:

C(ϕc ∗NJ, d) ∼= [Kop,V ](ϕc, C(NJ−, d))

∼= [Kop,V ](ϕc−, [Aop,V ](A(2, J−), C(N2, d)))

∼= [Kop,V ](ϕc, [Aop,V ](Ĵ , Ñd))

∼= [Aop,V ](ϕc ∗ Ĵ , Ñd)

(1)

where recall that Ñ = C(N,−) and Ĵ = A(−, J). We also point out that the composite

of all the isomorphisms in (1) is given by

C(ϕc ∗NJ, d) [Aop,V ](Ñ(ϕc ∗NJ), Ñd) [Aop,V ](ϕc ∗ Ĵ , Ñd)
Ñ [Aop,V](ξ̄c, Ñd)
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Of course, to get information about the density of N , a presentation P = (K, J, ϕ, ξ)
like in the previous definition is not enough. The existence of such a P only guarantees

that for each c ∈ C a certain colimit with values in the image of A exists in C and is in

some way connected to the object c through ξc and ξ̄c.

In order to obtain the density of N from such a presentation we need to ask for some

properties of these connecting morphisms ξc and ξ̄c:

Definition 2.5. Let (K, J, ϕ, ξ) be a presentation for N : A → C; we say that it is a:

• generating presentation if ξc is an epimorphism for each c ∈ C;
• density presentation if ξc is a regular epimorphism, and C(Na, ξc) and ξ̄c,a are

epimorphisms for each c ∈ C and a ∈ A;

• strict presentation if both ξc and ξ̄c,a are isomorphisms for each c ∈ C and

a ∈ A.

A direct consequence of this definition is the following result:

Proposition 2.6. Let P := (K, J, ϕ, ξ) be a presentation for N ; then:

(a) if P is generating, then Ñ is faithful;

(b) if P a density presentation, then N is dense;

(c) if P is strict, then N is dense and for each c ∈ C and G : Aop → V,

[Aop,V ](Ñc, G) ∼= [Kop,V ](ϕc, GJ).

Proof. (a). For each c, d in C consider the commutative diagram:

C(c, d) C(ϕc ∗NJ, d) [Aop,V ](ϕc ∗ Ĵ , Ñd)

[Aop,V ](Ñc, Ñd) [Aop,V ](Ñ(ϕc ∗NJ), Ñd)

C(ξc, d)

ÑÑcd

∼=

[Aop,V](ξ̄c, Ñd)

[Aop,V](Ñξc, Ñd)

(the triangle commutes by 1). Since ξc is by assumption an epimorphism, C(ξc, d) is a

monomorphism. As a consequence Ñcd is a monomorphism too and hence N is faithful.

(b). Suppose now that (K, J, ϕ, ξ) is a density presentation. Consider for each b, d ∈ C
the isomorphism

C(ϕb ∗NJ, d) [Aop,V ](Ñ(ϕb ∗NJ), Ñd) [Aop,V ](ϕb ∗ Ĵ , Ñd)
Ñ [Aop,V](ξ̄b, Ñd)

then [Aop,V ](ξ̄b, Ñd) is a split epimorphism, but it also is a monomorphism (since ξ̄b
is epi) and hence is invertible. As a consequence Ñ : C(ϕb ∗NJ, d)→ [Aop,V ](Ñ(ϕb ∗
NJ), Ñd) is itself an isomorphism.
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Now fix c, d in C as before; by hypothesis ξc is a regular epimorphism, i.e. is the

coequalizer of two maps u, v : e→ (ϕc ∗NJ). Precomposing u and v with ξe (which is

also a regular epimorphism) we get ξc as the coequalizer of u ◦ ξe, v ◦ ξe : ϕe ∗ NJ →
ϕc ∗NJ . Consider now the previous diagram completed with u, v and ξe:

C(c, d) C(ϕc ∗NJ, d) C(ϕe ∗NJ, d)

[Aop,V ](Ñc, Ñd) [Aop,V ](Ñ(ϕc ∗NJ), Ñd) [Aop,V ](Ñ(ϕe ∗NJ), Ñd)

C(ξc, d)

∼=Ñcd

C(u ◦ ξe, d)

C(v ◦ ξe, d)

mcd

∼=

where the two vertical arrows in the right square are isomorphisms by the previous

argument and mcd = [Aop,V ](Ñξc, Ñd) is a monomorphism since by hypothesis Ñξc
is an epimorphism. Note moreover that C(ξc, d) is the equalizer of C(u ◦ ξe, d) and

C(v ◦ ξe, d) since C(−, d) transforms colimits into limits; this and the commutativity of

the diagram imply that there exists r : [Aop,V ](Ñc, Ñd)→ C(c, d) such that C(ξc, d) ◦
r ∼= mcd. Then, using that mcd is monomorphism, it is easy to see that r is a right

inverse of Ñcd. Hence Ñcd is a split epimorphism; by (a) it is also a monomorphism

and hence is invertible; this means exactly that N is dense.

(c). Fix c in C and G : Aop → V ; then:

[Aop,V ](Ñc, G)
ξc∼= [Aop,V ](Ñ(ϕc ∗NJ), G)

ξ̄c∼= [Aop,V ](ϕc ∗ Ĵ , G)

∼= [Kop,V ](ϕc, [Aop,V ](Ĵ−, G))

∼= [Kop,V ](ϕc, GJ).

�

When N is fully faithful we can also consider another notion of presentation which

appears for example in Section 5 of [Kel82].

Definition 2.7. Let N : A → C be fully faithful; a discrete presentation for N is

a (not necessarily small) family (Kγ, Fγ : Kopγ → V ; Pγ : Kγ → A)γ∈Γ such that the

colimit Fγ ∗NPγ exists in C for each γ and is N -absolute (i.e. is preserved by Ñ), and

C is the closure of A under this family of colimits.

Note that, given a strict presentation of a fully faithful N , the fact that ξc and ξ̄c
are invertible says exactly that the colimits ϕc ∗NJ are preserved by Ñ and hence are

N -absolute.
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The following Theorem connects Day’s notion of presentation with that just intro-

duced by proving that when N is a full inclusion there is no difference between them.

Theorem 2.8. Given N : A → C, the following are equivalent:

(1) N is dense;

(2) N has a strict presentation.

If moreover N is fully faithful, they are further equivalent to:

(3) N has a discrete presentation.

Proof. (1) ⇒ (2). It is enough to consider the presentation P = (K, J, ϕ, ξ) with

K := A, J := idA, ϕc := Ñc and ξc := Ñc ∗N
∼=−→ c. Then ξ̄ca is also invertible since

ϕc ∗ A(a, J−) = Ñc ∗ A(a,−) ∼= C(Na, c) ∼= C(Na, Ñc ∗N) = C(Na, ϕc ∗NJ).

Thus P is a strict presentation.

(2)⇒ (1). Follows directly from the preceding Theorem.

(2)⇒ (3). Given P = (K, J, ϕ, ξ) strict, it is enough to consider the family

(Kc := K;Fc := ϕc;Pc := J)c∈C.

Indeed, the closure of A under Fc ∗NPc is C since c ∼= ϕc ∗NJ = Fc ∗NPc for each c

(P is strict); moreover these colimits are N -absolute:

Ñ(ϕc ∗NJ) = C(N−, ϕc ∗NJ)
ξ̄c∼= ϕc ∗ Ĵ ∼= ϕc ∗ Ñ(NJ),

where the last holds since N is fully faithful.

(3) ⇒ (2). Consider a family as in (3); then for each c ∈ C there exists γc ∈ Γ

such that c ∼= Fγc ∗NPγc (∗1) and Ñ(Fγc ∗NPγc) ∼= Fγc ∗ ÑNPγc (∗2). Define a strict

presentation P = (K, J, ϕ, ξc) by:

K :=
∑
c∈C

Kγc ,

J := (Pγc)c∈C : K → A

and ϕc := (ψd)d : Kop → V , where ψd : Kopγd → V are defined as

ψd =

{
Fγc d = c

0 d 6= c

Condition (∗1) defines ξc and together with (∗2) assures that the presentation P so

defined is strict. �



8 DENSE FUNCTORS AND DENSITY PRESENTATIONS

3. Left Kan Extensions and Adjoints

We are now going to see some properties implied by strict density presentations.

Let us fix henceforth N : A → C (not necessarily fully faithful) and a strict presentation

P = (K, J, ϕ, ξ).

Proposition 3.1. For each G : A → B, if ϕc ∗GJ exists in B then ϕc ∗GJ ∼= Ñc ∗G
for each c ∈ C and LanNG : C → B exists.

Proof. Let Y : Bop → [B,V ] be the Yoneda embedding; since Y is fully faithful and

transforms colimits of B into limits, it is enough to prove that Y (ϕc ∗GJ) ∼= {Ñc, Y G}
(this implies that Ñc ∗G exists in B and is ϕc ∗GJ). Let then b ∈ B:

{Ñc, Y G}(b) ∼= {Ñc,B(G−, b)}
∼= [Aop,V ](Ñc,B(G−, b))
2.6∼= [Kop,V ](ϕc,B(GJ−, b))
∼= {ϕc, Y GJ}(b).

Hence {Ñc, Y G} ∼= {ϕc, Y GJ} ∼= Y (ϕc ∗ GJ) as desired. About the existence of

LanNG, it follows since LanNG(c) is defined as Ñc ∗G and this exists by the previous

argument. �

Corollary 3.2. Given F : C → B, idFN exhibits F as LanN(FN) iff F preserves

ϕc ∗NJ for each c in C.

Proof. We have Fc ∼= F (ϕc∗NJ) through Fξc and LanN(FN) ∼= Ñc∗FN ∼= ϕc∗FNJ
by the previous Proposition applied to FN . It follows that Fc ∼= LanN(FN)c iff F

preserves ϕc ∗NJ . �

We are now going to see how strict presentations are related to adjoints.

Definition 3.3. Let R : B → C, N : A → C and F : A → B, we say that F is a left

N -adjoint of R (and R is a right N -adjoint of F ), written F aN R, if for each a ∈ A
and b ∈ B

B(Fa, b) ∼= C(Na,Rb)
naturally in a and b.

Proposition 3.4. Let P be a strict presentation for N : A → B. Then:

(1) F : C → B has a right adjoint iff it preserves ϕc ∗NJ for each c ∈ C and FN

has a right N-adjoint.

(2) If F aN R : B → C and ϕc ∗FJ exists in B for each c, then R has a left adjoint.
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Proof. (1). Suppose that F preserves ϕc ∗ NJ and FN aN R : B → C. Then, by

Corollary 3.2, F ∼= LanN(FN), i.e. Fc ∼= Ñc ∗ FN for each c. As a consequence

F a R:

B(Fc, b) ∼= B(Ñc ∗ FN, b)
∼= [Aop,V ](Ñc,B(FN−, b))
∼= [Aop,V ](Ñc, C(N−, Rb)) (FN aN R)

∼= C(c, Rb) (N dense)

Vice versa, let R : B → C be a right adjoint for F ; then F preserves all colimits and by

adjointness B(FNa, b) ∼= C(Na,Rb). In particular F preserves ϕc ∗NJ and FN aN R.

(2). Let F̄ : C → B be defined as F̄ c := ϕc ∗ FJ ; then:

B(F̄ c, b) = B(ϕc ∗ FJ, b)
∼= [Kop,V ](ϕc,B(FJ−, b))
∼= [Kop,V ](ϕc, C(NJ−, Rb)) (F aN R)

∼= C(ϕc ∗NJ,Rb) ∼= C(c, Rb).

Note that a priori F̄ is not well defined (since ϕc is discrete on c ∈ C), but as a

consequence of these isomorphisms it becomes an actual functor F̄ : C → B. �

The following is the main theorem of this section, it explains in which circumstances

an N -adjunction induces an equivalence of categories. We are going to see a direct

application of this in the next section.

Theorem 3.5. Let P be a strict presentation for N : A → C. Suppose that F aN R :

B → C and let F̄ a R be given with F̄ c = ϕc ∗ FJ . Then:

(1) If R is conservative, preserves ϕRb ∗ FJ for each b ∈ B, and N ∼= RF , then R

is fully faithful and F is dense.

(2) R is an equivalence (with inverse F̄ ) iff it is conservative, preserves ϕc ∗FJ for

each c ∈ C and N ∼= RF .

Proof. (1). By hypothesis F̄ a R; thus for each b ∈ B we can consider the counit of

the adjunction F̄Rb→ b which, together with R, induces the following isomorphisms:

RF̄Rb ∼= R(ϕRb ∗ FJ) (def of F̄ )

∼= ϕRb ∗RFJ (by 1)

∼= ϕRb ∗NJ (N ∼= RF )

∼= Rb (strict presentation)
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But R is conservative, thence the counit F̄Rb→ b is an isomorphism; as a consequence

R is fully faithful. Finally to see that F is dense, it is enough to consider the presen-

tation (K, J, ϕ′, ξ′) with K and J as before, ϕ′b := ϕRb and ξ′b := ξRb. This is a strict

presentation since the original one was; thus F is dense by Proposition 2.6.

(2). Suppose first that R is an equivalence; note that in this case the left N -adjoint

F can be defined simply as R−1N and F̄ as R−1. The only non trivial thing to prove

is that N ∼= RF . This is true iff F̄N ∼= F (because F̄ = R−1), but F̄ a R and F aN R

imply B(F̄Na, b) ∼= C(Na,Rb) ∼= B(Fa, b) for each b ∈ B and thus F̄Na ∼= Fa.

Vice versa if R is conservative, preserves ϕc ∗ FJ and N ∼= RF , by point (1) we only

need to prove that RF̄ ∼= idC. Let c ∈ C; then c ∼= ϕc ∗NJ ∼= ϕc ∗RFJ ∼= R(ϕc ∗FJ) ∼=
RF̄c. �

4. Beck’s Theorem

In this section we are going to apply Theorem 3.5 in the context of monads to get a

proof of Beck’s theorem on monadic adjunctions.

Let (T, µ, η) be a monad in V-Cat, where T : C → C is a functor, µ : T 2 → T is the

multiplication and η : idC → T the unit. Consider the Eilenberg-Moore category CT
of T -algebras whose objects are algebras (c, ζ : Tc→ c) in C and the hom-objects are

defined as the equalizer

CT ((c, ζc), (d, ζd)) C(c, d) C(Tc, d)
C(ζc, d)

C(Tc, ζd) ◦ Tcd

Inside CT we consider the Kleisli category CT with objects free T -algebras, i.e. alge-

bras of the form (Tc, µc) for some c ∈ C.
Let N : CT → CT be the inclusion; we are going to show that N is dense by

constructing a strict presentation. Before that, we first need to recall a general fact

about algebras:

Proposition 4.1 ([ML71]). For any T -algebra (c, ζ) in CT , ζ : Tc → c is the split

coequalizer in C of µc and Tζ with splitting maps T 2c
ηTc←− Tc

ηc←− c. In particular ζ is

an absolute coequalizer, i.e. it is preserved by each functor G : C → B.

Consider now the free V-category D over the ordinary category

{2 1};
m

s

and define a strict presentation for N as follows: K := D ⊗ CT , the index functor

J : K → CT is such that:

J(i,−) := CT UT

−→ C T i−1

−→ C J−→ CT
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where UT is the forgetful functor, J is the canonical functor sending c to (Tc, µc) and

i = 1, 2.

On the other side, given c = (c, ζ) in CT , set

J(m, c) := µc : T 2c→ Tc;

J(s, c) := Tζ : T 2c→ Tc.

The coefficient functor ϕ : Kop ⊗ |CT | → V is defined as the composite

Kop ⊗ |CT | = D ⊗ CT ⊗ |CT | CT ⊗ |CT | V
πD CT (−, | − |)

Finally, let c = (c, ζ) be an object of CT ; then set ξc to be the isomorphism:

ϕc ∗NJ ∼= colim
d∈D

(ϕ(d,−, c) ∗NJ(d,−))

∼= colim
d∈D

(CT (−, c) ∗NJ(d,−))

∼= colim
d∈D

NJ(d, c)

∼= coeq(µc, T ζ)

∼= c (by 4.1)

We have just defined a presentation for N , to see that it is strict note that for each a

in CT ,

ϕc ∗ Ĵa ∼= ϕc ∗ CT (Na, NJ−) ∼= CT (Na, ϕc ∗NJ)

since N is fully faithful and the coequalizer ϕc ∗ NJ is absolute. This means exactly

that ξ̄ca is also invertible for each c ∈ CT and a ∈ CT ; i.e. (K, J, ϕ, ξ) is a strict

presentation.

An immediate consequence of this is that the inclusion N : CT → CT is dense;

moreover we can apply Theorem 3.5 to get:

Theorem 4.2 (Beck). An adjunction L a R : B → C is monadic iff R is conservative

and creates coequalizers of R-split pairs (i.e. of those pairs (f, g) such that (Rf,Rg)

has a split coequalizer in C).

Proof. One direction is done in the usual way and can be found for example in [ML71].

For the other direction, suppose that R is conservative and creates coequalizers of R-

split pairs. Let (T = RL, µ = RεL, η) be the monad induced by the adjunction (η

and ε are respectively the unit and counit); then the previous argument gives a strict

presentation (K, J, ϕ, ξ) for the inclusion N : CT → CT .

Let K : B → CT be the comparison functor defined on objects by Kb = (Rb,Rεb) ∈ CT ;

to apply Theorem 3.5 we need to find, among the other things, an ordinary left adjoint
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and a left N -adjoint to K. Let UT : CT → C be the forgetful functor; define then

F : CT → B as the coequalizer

LRLUT LUT F
α

εLUT

where α is defined on components c = (c, ζ) ∈ CT as αc := Lζ : LRLc → Lc. Note

that this coequalizer exists in [CT ,B] since for each (c, ζ) ∈ CT the pair (Lζ, εLc) is

R-split (by 4.1) and R creates coequalizers of such pairs. Then F a K; indeed for each

c = (c, ζ) ∈ CT and b ∈ B we have:

B(Fc, b) ∼= B(coeq(Lζ, εLc), b)

∼= eq(B(Lζ, b),B(εLc, b))

∼= eq(C(ζ, Rb), C(RLc,Rεb) ◦RL) (L a R)

= CT (c, Kb);

As a consequence FN aN R and, since KF ∼= idCT by construction, N ∼= K(FN).

Moreover K is conservative and preserves the colimits ϕc ∗FNJ ∼= coeq(Fµc, FTζ) for

each c = (c, ζ) ∈ CT since R does; hence we can apply Theorem 3.5(2) and get that K

is an equivalence. �

5. Free Cocompletions

Here we apply the theory of density presentations to get information on the free

cocompletions of categories under a certain class of colimits. The results we show are

taken from [Kel82], but a more detailed treatment of such cocompletions and their

properties can be found in [KS05].

Given a category A, it’s reasonable to look for its free cocompletion (under a class

of colimits) in the category of presheaves [Aop,V ] like it happens in the ordinary case.

The problem is that we want the free cocompletion to be a V-category like A, but

[Aop,V ] may not be (as we said in section 1). To avoid this, instead of considering all

presheaves we can restrict ourselves to the small ones:

Definition 5.1. Let A be a category; a presheaf F : Aop → V is called small if there

exists a small K and a functor J : K → A such that F ∼= LanJopH ∼= H ∗ A(−, J) for

some H : Kop → V . Denote by PA the full subcategory of [Aop,V ] whose objects are

small functors.

It is interesting to note (Proposition 4.83 in [Kel82]) that if F : A → V is small the

functor J in the definition can be chosen to be fully faithful, so that F is the left Kan

extension of its restriction to a small full subcategory of A.
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As we anticipated, the category PA of small presheaves is a V-category: for each

F small and any G (using the universal property of Lan) we have

[Aop,V ](F,G) ∼= [Aop,V ](LanJopH,G) ∼= [Kop,V ](H,GJop),

which exists in V since K is small. Moreover the Yoneda embedding Y : A → [Aop,V ]

factors through PA since for each a ∈ A we have A(−, a) ∼= H ∗ A(−, Ja), where

H = I : Iop → V and Ja : I → A points to a (I being the unit V-category). As a

consequence we can see A as a full subcategory of PA, which is moreover cocomplete:

Proposition 5.2 ([Kel82]). PA is closed in [Aop,V ] under small colimits.

Let us now fix a collection Φ of functors with small domains; a colimit with a weight

from Φ will be called Φ-colimit. Our aim is to construct the free cocompletion of a

category A under Φ-colimits.

Definition 5.3. We say that a category C is Φ-cocomplete if it has all Φ-colimits and

that a functor F : C → B is Φ-cocontinuous if preserves them.

Given a category A, consider the closure Φ(A) of A in PA under Φ-colimits and

denote by N : A → Φ(A) the inclusion; then the following result holds.

Theorem 5.4. Φ(A) is the free Φ-cocompletion of A; i.e. Φ(A) is Φ-cocomplete and

for each Φ-cocomplete C the left Kan extension along N induces an equivalence

LanN : [A, C] −→ Φ-Coct[Φ(A),B]

with inverse [N, 1]. Moreover the inclusion N : A → Φ(A) is dense, with discrete

presentation given by the family of all Φ-colimits.

Proof. First we prove that N is dense. To see that the family of all Φ-colimits is a

discrete presentation for N we only need to prove that they are N -absolute (since Φ(A)

is by definition the closure of A under them). But Ñ : Φ(A) → [Aop,V ] is just the

inclusion and hence preserves Φ-colimits by construction. As a consequence N is dense

by Theorem 2.8. Now, Φ(A) is Φ-cocomplete by definition and LanN is fully faithful

since:

[Φ(A),B](LanNF,LanNG) ∼= [A,B](F, (LanNG)N) ∼= [A,B](F,G)

where the first isomorphism is given by the universal property of Lan and the latter

follows from (LanNG)N ∼= G (N is fully faithful). Finally, by Corollary 3.2, for each

Φ-cocontinuous S : Φ(A) → B the identity idSN exhibits S as LanN(SN); this shows

that [N, 1] is a left-inverse for LanN which is thence an equivalence of categories. �



14 DENSE FUNCTORS AND DENSITY PRESENTATIONS

6. Absolutely Dense Functors

LetN : A → C be any dense functor; then Theorem 2.8 gives a canonical presentation

for N and shows that the colimits involved Ñc ∗N are N -absolute. In this section we

consider those dense functors for which Ñc ∗ N are furthermore preserved by any

functor.

Definition 6.1. A functor N : A → C is called absolutely dense if it is dense and

all colimits Ñc ∗N , c ∈ C, are absolute, i.e. are preserved by any functor.

We can classify absolutely dense functors as follows:

Proposition 6.2. Given N : A → C, the following are equivalent:

(1) N is absolutely dense;

(2) for any category B

[N, 1] : [C,B] −→ [A,B]

is fully faithful;

(3) [N op, 1] : [Cop,V ] −→ [Aop,V ] is fully faithful;

(4) for every ϕ : Cop → V and F : C → B the colimit ϕ ∗F exists iff (ϕN op) ∗ (FN)

exists and they are isomorphic.

Proof. (1) ⇒ (2). Let F,G : C → B be any pair of functors; since N is absolutely

dense, by Corollary 3.2, F ∼= LanN(FN) and hence:

[C,B](F,G) ∼= [C,B](LanN(FN), G)

∼= [A,B](FN,GN)

by the universal property of Lan. Then [N, 1] is fully faithful.

(2)⇒ (3). Take B = Vop and then use [N op, 1] = [N, 1]op.

(3) ⇒ (1). N is dense since Ñ is the composite [N op, 1]Y and [N op, 1] is full and

faithful by hypothesis. Moreover, for a fixed c in C, any functor F : C → B, and b ∈ B
we have:

B(Ñc ∗ (FN), b) ∼= [Aop,V ](Ñc,B(FN−, b))
∼= [Aop,V ](C(−, c)N op,B(F−, b)N op)

∼= [Cop,V ](C(−, c),B(F−, b))
∼= B(Fc, b)

∼= B(F (Ñc ∗N), b)

so that the colimits Ñc ∗N are absolute and hence N is absolutely dense.
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(3)⇒ (4). For any b ∈ B we have:

B((ϕN op) ∗ (FN), b) ∼= [Aop,V ](ϕN op,B(FN−, b))
∼= [Aop,V ](ϕN op,B(F−, b)N op)

∼= [Cop,V ](ϕ,B(F−, b))
∼= B(ϕ ∗ F, b).

Then (4) follows.

(4) ⇒ (3). Taking as F the Yoneda embedding Y : C → [Cop,V ], (4) says that for

each ϕ : Cop → V we have ϕ ∼= LanNop(ϕN op). Thence we can conclude as in (1)⇒ (2).

�

Functors satisfying property (3) of the last Proposition are called connected in [BV02]

and are used to classify reflective and coreflective subcategories of presheaves:

Theorem 6.3 (3.11 in [BV02]). Let A be a category and J : K → [Aop,V ] a full

embedding of a reflective and coreflective subcategory (i.e. such that the inclusion J

has both a left and a right adjoint). Then there exists N : A → C connected such that

J is isomorphic to the embedding

[N op, 1] : [Cop,V ] −→ [Aop,V ].

Proof. (Sketch). We are only going to show how to define N : A → C. Let L :

[Aop,V ]→ K be the left adjoint of J and consider the functor E given by the composite

A Y−→ [Aop,V ]
L−→ K,

then we can factorise it as E = E ′N with N : A → B surjective on objects and

E ′ : B → K fully faithful. One can prove that N is absolutely dense, hence connected,

and J ∼= [N op, 1]. �
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