MUNI

Enriched purity: towards enriched model theory

Giacomo Tendas

j.w. Rosický

17 September 2023

Purity in logic

Let \mathbb{L} be a language with function and relation symbols. A positive-primitive formula is one of the form

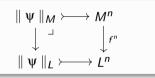
$$\psi(x) := \exists y \ \phi(x,y)$$

where ψ is a conjunction of atomic formulas. E.g. $\varphi(x, y) = (t(x, y) = s(x, y)) \land R(x, y)$.

Definition

A monomorphisms of \mathbb{L} -structures $f: M \to L$ is called pure if for any pp-formula $\psi(x)$ and any $a \in M^n$ we have

$$M \models \psi(a)$$
 iff $L \models \psi(fa)$



Purity in logic

Let \mathbb{L} be a language with function and relation symbols. A positive-primitive formula is one of the form

$$\psi(x) := \exists y \ \varphi(x,y)$$

where ψ is a conjunction of atomic formulas. E.g. $\varphi(x, y) = (t(x, y) = s(x, y)) \land R(x, y)$.

Definition

A monomorphisms of L-structures $f: M \to L$ is called pure if for any pp-formula $\psi(x)$ and any $a \in M^n$ we have

$$M \models \psi(a)$$
 iff $L \models \psi(fa)$

$$\begin{array}{c} \|\Psi\|_{\mathcal{M}} \longmapsto \mathcal{M}^{n} \\ \downarrow \quad & \downarrow_{f^{n}} \\ \|\Psi\|_{L} \longmapsto \mathcal{L}^{n} \end{array}$$

Theorem (classical)

The following are equivalent for a full subcategory \mathcal{H} of $Str(\mathbb{L})$:

- $\mathcal{H} = \mathsf{Mod}(\mathbb{T})$ for a regular \mathbb{L} -theory \mathbb{T} ;
- *H* is closed under products, filtered colimits, and pure subobjects.

Injectivity classes

Note: to say that A satisfies $\varphi(x) = \exists y \ \psi(x, y)$ is the same as requiring that the composite

$$\psi_{\mathcal{A}} = \{(a, b) \mid \mathcal{A} \models \psi(a, b)\} \xrightarrow{i} \mathcal{A} \times \mathcal{A} \xrightarrow{\pi_1} \mathcal{A}$$

is surjective.

Injectivity classes

Note: to say that A satisfies $\varphi(x) = \exists y \ \psi(x, y)$ is the same as requiring that the composite

$$\Psi_{A} = \{(a, b) \mid A \models \Psi(a, b)\} \xrightarrow{i} A \times A \xrightarrow{\pi_{1}} A$$

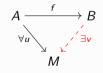
is surjective.

The categorical analogue of regular theories are injectivity classes:

Definition

An object M is injective w.r.t. a morphism $f\colon A\to B$ in a category ${\mathcal K}$ if

$$\forall u \colon A \to M, \ \exists v \colon B \to M \ (vf = u).$$



Injectivity classes

Note: to say that A satisfies $\varphi(x) = \exists y \ \psi(x, y)$ is the same as requiring that the composite

$$\Psi_{\mathcal{A}} = \{(a, b) \mid \mathcal{A} \models \Psi(a, b)\} \xrightarrow{i} \mathcal{A} \times \mathcal{A} \xrightarrow{\pi_1} \mathcal{A}$$

is surjective.

The categorical analogue of regular theories are injectivity classes:

Definition

An object M is injective w.r.t. a morphism $f: A \rightarrow B$ in a category \mathcal{K} if

$$\forall u \colon A \to M, \ \exists v \colon B \to M \ (vf = u).$$

Equivalently, if $\mathcal{K}(f, M) : \mathcal{K}(B, M) \longrightarrow \mathcal{K}(A, M)$ is surjective. An injectivity class in \mathcal{K} is a full subcategory of \mathcal{K} spanned by the objects injective with respect to a set $\{f_i : A_i \to B_i\}_{i \in I}$.

Injectivity classes II

Theorem (Rosický-Adámek-Borceux)

TFAE for a full subcategory $\mathcal H$ of a locally finitely presentable category $\mathcal K$:

- *H* is a (finite) injectivity class in *K*;
- *H* is closed under products, filtered colimits, and pure subobjects.

Injectivity classes II

Theorem (Rosický-Adámek-Borceux)

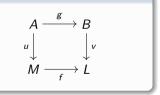
TFAE for a full subcategory ${\cal H}$ of a locally finitely presentable category ${\cal K}:$

- *H* is a (finite) injectivity class in *K*;
- *H* is closed under products, filtered colimits, and pure subobjects.

What is purity in this context?

Definition

A morphism $f: M \to L$ in \mathcal{K} is pure provided that in each commutative diagram on the right, where A and B are finitely presentable, there is a morphism $t: B \to M$ such that tg = u.



Note: \mathcal{H} is a (finite) injectivity class in some locally finitely presentable category \mathcal{K} if and only if $\mathcal{M} \simeq \mathbf{Mod}(\mathbb{T})$ for some regular theory \mathbb{T} on a language \mathbb{L} .

Injectivity classes II

Theorem (Rosický-Adámek-Borceux)

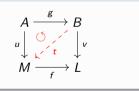
TFAE for a full subcategory ${\cal H}$ of a locally finitely presentable category ${\cal K}:$

- *H* is a (finite) injectivity class in *K*;
- *H* is closed under products, filtered colimits, and pure subobjects.

What is purity in this context?

Definition

A morphism $f: M \to L$ in \mathcal{K} is pure provided that in each commutative diagram on the right, where A and B are finitely presentable, there is a morphism $t: B \to M$ such that tg = u.



Note: \mathcal{H} is a (finite) injectivity class in some locally finitely presentable category \mathcal{K} if and only if $\mathcal{M} \simeq \mathbf{Mod}(\mathbb{T})$ for some regular theory \mathbb{T} on a language \mathbb{L} .

Enrichment

We fix:

- a symmetric monoidal closed category $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$ which is locally presentable;
- a factorization system $(\mathcal{E}, \mathcal{M})$ on \mathcal{V} ;

To keep in mind:

- 1 Set and Ab with (epi, mono);
- **OMEN** with (dense, closed isometry);
- **3 DGAb** with (regular epi, mono).

The enriched case

Enrichment

We fix:

- a symmetric monoidal closed category $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$ which is locally presentable;
- a factorization system $(\mathcal{E}, \mathcal{M})$ on \mathcal{V} ;

Then there is an enriched notion of \mathcal{E} -injectivity:

Definition (Lack-Rosický)

An object *M* is \mathcal{E} -injective w.r.t. a morphism $f: A \to B$ in a \mathcal{V} -category \mathcal{K} if the map

 $\mathcal{K}(f, M) \colon \mathcal{K}(B, M) \longrightarrow \mathcal{K}(A, M)$

lies in \mathcal{E} . An \mathcal{E} -injectivity class in \mathcal{K} is a full subcategory of \mathcal{K} spanned by the objects \mathcal{E} -injective with respect to a set $\{f_i : A_i \to B_i\}_{i \in I}$.

A corresponding notion of purity was missing.

To keep in mind:

- 1 Set and Ab with (epi, mono);
- **2** Met with (dense, closed isometry);
- **3 DGAb** with (regular epi, mono).

The enriched case

Enriched purity

The result below is based on some assumptions on $\mathcal E$ and a class of objects $\mathcal G \subseteq \mathcal V$ such that powers by G satisfy a stability condition with respect to \mathcal{E} . Then we can prove:

Theorem

TFAE for a full subcategory \mathcal{H} of a locally finitely presentable \mathcal{V} -category \mathcal{K} :

- \mathcal{H} is a (finite) \mathcal{E} -injectivity class in \mathcal{K} ;
- \mathcal{H} is closed under products, filtered colimits, powers by \mathcal{G} , and \mathcal{E} -pure subobjects.

What is an \mathcal{E} -pure morphism?

Enriched purity

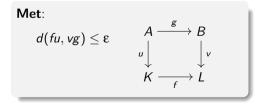
The result below is based on some assumptions on \mathcal{E} and a class of objects $\mathcal{G} \subseteq \mathcal{V}$ such that powers by \mathcal{G} satisfy a stability condition with respect to \mathcal{E} . Then we can prove:

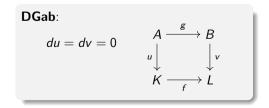
Theorem

TFAE for a full subcategory $\mathcal H$ of a locally finitely presentable $\mathcal V$ -category $\mathcal K$:

- *H* is a (finite) *E*-injectivity class in *K*;
- *H* is closed under products, filtered colimits, powers by *G*, and *E*-pure subobjects.

What is an \mathcal{E} -pure morphism? Definition by examples:





Enriched purity

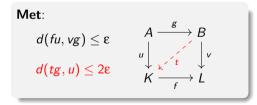
The result below is based on some assumptions on \mathcal{E} and a class of objects $\mathcal{G} \subseteq \mathcal{V}$ such that powers by \mathcal{G} satisfy a stability condition with respect to \mathcal{E} . Then we can prove:

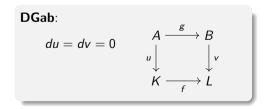
Theorem

TFAE for a full subcategory $\mathcal H$ of a locally finitely presentable $\mathcal V$ -category $\mathcal K$:

- *H* is a (finite) *E*-injectivity class in *K*;
- *H* is closed under products, filtered colimits, powers by *G*, and *E*-pure subobjects.

What is an \mathcal{E} -pure morphism? Definition by examples:





Enriched purity

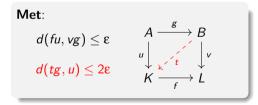
The result below is based on some assumptions on \mathcal{E} and a class of objects $\mathcal{G} \subseteq \mathcal{V}$ such that powers by \mathcal{G} satisfy a stability condition with respect to \mathcal{E} . Then we can prove:

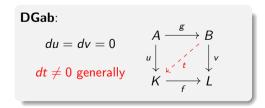
Theorem

TFAE for a full subcategory $\mathcal H$ of a locally finitely presentable $\mathcal V$ -category $\mathcal K$:

- *H* is a (finite) *E*-injectivity class in *K*;
- *H* is closed under products, filtered colimits, powers by *G*, and *E*-pure subobjects.

What is an \mathcal{E} -pure morphism? Definition by examples:





A logical interpretation

• The canonical language \mathbb{L} on a locally finitely presentable \mathcal{V} -category \mathcal{K} is has sorts and function symbols given by the objects and morphisms of \mathcal{K}_f^{op} .

Every object M of \mathcal{K} defines an \mathbb{L} -structure in \mathcal{V} :

- a sort A is assigned to $M_A := \mathcal{K}(A, M)$;
- a function symbol f : (A, B) is assigned to $M_f := \mathcal{K}(f, M) : M_A \to M_B$.

pp-formulas:

$$\Psi(x) \equiv \exists y \ \phi(x,y)$$

where $\phi(x, y)$ is a conjunction of

$$(f(x) = g(y))$$

for some $f: B \rightarrow A$, $g: B \rightarrow C$.

Interpretation:

e.g.:
$$\psi(x) \equiv \exists y \ (f(x) = g(y))$$

A logical interpretation

• The canonical language \mathbb{L} on a locally finitely presentable \mathcal{V} -category \mathcal{K} is has sorts and function symbols given by the objects and morphisms of \mathcal{K}_f^{op} .

Every object M of \mathcal{K} defines an \mathbb{L} -structure in \mathcal{V} :

- a sort A is assigned to $M_A := \mathcal{K}(A, M)$;
- a function symbol f : (A, B) is assigned to $M_f := \mathcal{K}(f, M) : M_A \to M_B$.

pp-formulas:

$$\Psi(x) \equiv \exists y \ \phi(x,y)$$

where $\phi(x, y)$ is a conjunction of

$$(f(x) = g(y))$$

for some $f: B \rightarrow A$, $g: B \rightarrow C$.

Interpretation:

e.g.:
$$\Psi(x) \equiv \exists y \ (f(x) = g(y))$$

$$\| \phi \|_{M} \longmapsto M_{A} \times M_{C} \xrightarrow[M_{f}P_{1}]{M_{f}P_{1}} M_{B}$$

A logical interpretation

• The canonical language \mathbb{L} on a locally finitely presentable \mathcal{V} -category \mathcal{K} is has sorts and function symbols given by the objects and morphisms of \mathcal{K}_f^{op} .

Every object M of \mathcal{K} defines an \mathbb{L} -structure in \mathcal{V} :

- a sort A is assigned to $M_A := \mathcal{K}(A, M)$;
- a function symbol f : (A, B) is assigned to $M_f := \mathcal{K}(f, M) : M_A \to M_B$.

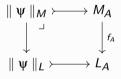
pp-formulas: $\psi(x) \equiv \exists y \ \phi(x, y)$ where $\phi(x, y)$ is a conjunction of (f(x) = g(y))for some $f : B \to A, g : B \to C.$

Interpretation: e.g.: $\Psi(x) \equiv \exists y \ (f(x) = g(y))$ $\| \phi \|_{M} \xrightarrow{\longrightarrow} M_{A} \times M_{C} \xrightarrow{p_{1}} M_{A}$ $\downarrow \psi \|_{M}$

A logical interpretation II

Definition

Let $f: M \to L$ be a morphism in a locally finitely-presentable \mathcal{V} -category \mathcal{K} . We say that f is elementary with respect to a pp-formula ψ if the square below is a pullback.



Theorem

Let \mathcal{K} be a locally finitely presentable \mathcal{V} -category and $f: M \to L$ be a morphism in it. Then f is \mathcal{E} -pure if and only if it is elementary with respect to any pp-formula in the canonical language associated to \mathcal{K} .

Can we talk about languages, structures, terms, and formulas in general?

Towards enriched model theory

Introduce enriched languages, structures, and terms:

Definition

• A (single-sorted) enriched (operational) language \mathbb{L} is the data of a set of operation symbols f: (X, Y) whose arities X and Y are objects of \mathcal{V}_f .

Introduce enriched languages, structures, and terms:

Definition

- A (single-sorted) enriched (operational) language L is the data of a set of operation symbols *f*: (*X*, *Y*) whose arities *X* and *Y* are objects of *V*_{*f*}.
- An L-structure is the data of an object A ∈ V together with a morphism f_A: A^X → A^Y in V for any operation symbol f: (X, Y) in L.

Towards enriched model theory

Introduce enriched languages, structures, and terms:

Definition

- A (single-sorted) enriched (operational) language \mathbb{L} is the data of a set of operation symbols f: (X, Y) whose arities X and Y are objects of \mathcal{V}_f .
- An L-structure is the data of an object $A \in \mathcal{V}$ together with a morphism $f_A : A^X \to A^Y$ in \mathcal{V} for any operation symbol f: (X, Y) in \mathbb{L} .
- The class of L-terms is defined recursively as follows:
 - **1** Every morphism $f: Y \to X$ of \mathcal{V}_f is an (X, Y)-ary term;
 - **2** Every operation symbol f: (X, Y) of \mathbb{L} is an (X, Y)-ary term;
 - **3** If t is a (X, Y)-ary term and Z is an arity, then t^Z is a $(Z \otimes X, Z \otimes Y)$ -ary term;
 - 4 If t and s are (X, Y)-ary and (Y, W)-ary terms; then $s \circ t$ is a (X, W)-ary term.

Then one can define equational theories: to appear soon. What about regular theories???

Thank You