MUNI

On continuity of functors between locally presentable categories

Giacomo Tendas

18 December 2023

The theorem

Theorem

Let \mathcal{K} be locally finitely presentable. There exists a regular cardinal γ such that, given any finitary $F : \mathcal{K} \to \mathcal{L}$, with \mathcal{L} locally finitely presentable, the following are equivalent:

- **1** F preserves all γ -small limits;
- **9** F preserves all small limits;
- **8** F has a left adjoint.

Locally presentable categories

Locally presentable categories have been introduced by Gabriel and Ulmer in 1971, and have been thoroughly studied since then (Makkai–Paré, Adámek–Rosický, etc).

Definition

A category \mathcal{K} is called **locally finitely presentable** if:

- *K* is cocomplete;
- has a set of finitely presentable objects which generate K under filtered colimits;

For an infinitary version replace "finite" with " λ -small", for a regular cardinal λ .

These include:

- Finitary varieties;
- Finitary quasivarieties;
- Categories of models of finite limit sketches;
- Categories of models of essentially algebraic theories

The following are locally finitely presentable:

- $\bullet \mathcal{K} = \mathbf{Set}$
- ${\bf 2} \ {\cal K} = {\bf Pos}$
- $\textbf{\textit{8}} \ \mathcal{K} = \textbf{Bool}$
- $\textbf{4} \ \mathcal{K} = \textbf{Gra}$
- **5** $\mathcal{K} = Cat$
- $\textbf{\textbf{6}} \ \mathcal{K} = \textbf{Ab}$
- $\mathcal{O} \mathcal{K} = R\text{-}Mod$
- $\textbf{8} \ \mathcal{K} = \textbf{Vect}$

The following are locally finitely presentable:

- ${\bf \it O} \ {\cal K} = {\bf Pos}$
- $\textbf{\textit{8}} \ \mathcal{K} = \textbf{Bool}$
- $\textbf{4} \ \mathcal{K} = \textbf{Gra}$
- $\mathbf{6} \ \mathcal{K} = \mathbf{Cat}$
- 6 $\mathcal{K} = Ab$
- $\mathcal{O} \mathcal{K} = R\text{-}Mod$
- $\textbf{8} \ \mathcal{K} = \textbf{Vect}$

The following are locally finitely presentable:

- **6** $\mathcal{K} = Cat$
- $\textbf{6} \ \mathcal{K} = \textbf{Ab}$
- $\mathcal{O} \mathcal{K} = R\text{-}Mod$

 $\textbf{8} \ \mathcal{K} = \textbf{Vect}$

The following are locally finitely presentable:

- **6** $\mathcal{K} = Cat$

 $\rightarrow \mathcal{K}_f = \{ \text{finite obj.} + \text{finite set of generating mor.} \};$

 $\mathbf{6} \ \mathcal{K} = \mathbf{Ab}$

 $\mathcal{O} \mathcal{K} = R\text{-}Mod$

 $\textbf{8} \ \mathcal{K} = \textbf{Vect}$

The following are locally finitely presentable:

- - $\rightarrow \mathcal{K}_f = \{ \text{finite graphs} \};$
- **6** $\mathcal{K} = \mathbf{Cat}$

4 $\mathcal{K} = \mathbf{Gra}$

- 6 $\mathcal{K} = Ab$
- $\mathcal{O} \mathcal{K} = R$ -Mod
- $\textbf{8} \ \mathcal{K} = \textbf{Vect}$

- $\rightarrow \mathcal{K}_f = \{ \text{finite obj.} + \text{finite set of generating mor.} \};$
- $\rightarrow \mathcal{K}_f = \{ \text{finitely presented groups} \};$
- $\rightarrow \mathcal{K}_f = \{ \text{finitely presented modules} \};$
- $\rightarrow \mathcal{K}_f = \{ \text{finite dimensional} \}.$

The theorem

Theorem

Let \mathcal{K} be locally finitely presentable. There exists a regular cardinal γ such that, given any finitary $F \colon \mathcal{K} \to \mathcal{L}$, with \mathcal{L} locally finitely presentable, the following are equivalent:

- **1** F preserves all γ -small limits;
- **2** F preserves all small limits;
- **8** F has a left adjoint.

The optimal regular cardinal γ provided by our proofs is one for which:

- \mathcal{K}_f has less than γ objects (up to isomorphism);
- there exists β such that $\gamma > \beta > \#\mathcal{K}(X, Y)$ for each $X, Y \in \mathcal{K}_f$.

Examples

1 $\mathcal{K} = \mathbf{Set}$	$\rightarrow \mathcal{K}_f = \{ \text{finite sets} \}$
--------------------------------	--

- $\mathbf{\mathfrak{S}} \ \mathcal{K} = \mathbf{Bool} \qquad \rightarrow \ \mathcal{K}_f = \{ \text{finite Boolean algebras} \}$
- **5** $\mathcal{K} = \mathbf{Cat}$
- $\textbf{6} \ \mathcal{K} = \textbf{Ab}$
- $\mathcal{K} = R-\mathbf{Mod} \\ (R \text{ finite ring})$
- $\textbf{8} \ \mathcal{K} = \mathbb{R}\text{-}\textbf{Vect}$

- $\rightarrow \mathcal{K}_f = \{\text{finite obj.} + \text{finite gen. mor.}\}$ $\rightarrow \mathcal{K}_f = \{\text{finitely presented groups}\}$ $\rightarrow \mathcal{K}_f = \{\text{finitely presented modules}\}$
- $\rightarrow \mathcal{K}_f = \{ \text{finite dimensional} \}$

Examples

0	\mathcal{K}	=	Set	
---	---------------	---	-----	--

- $\rightarrow \mathcal{K}_f = \{ \text{finite sets} \}$
- $\mathbf{\mathfrak{S}} \ \mathcal{K} = \mathbf{Bool} \qquad \rightarrow \ \mathcal{K}_f = \{ \text{finite Boolean algebras} \}$
- **5** $\mathcal{K} = Cat$
- $\textbf{6} \ \mathcal{K} = \textbf{Ab}$
- $\mathcal{K} = R \mathbf{Mod} \\ (R \text{ finite ring})$
- $\textbf{8} \ \mathcal{K} = \mathbb{R}\text{-}\textbf{Vect}$

- $\rightarrow \mathcal{K}_{f} = \{\text{finite graphs}\}$ $\rightarrow \mathcal{K}_{f} = \{\text{finite obj.} + \text{finite gen. mor.}\}$ $\rightarrow \mathcal{K}_{f} = \{\text{finitely presented groups}\}$
- $\rightarrow \ \mathcal{K}_{\textit{f}} = \{ \text{finitely presented modules} \}$
- $\rightarrow \ \mathcal{K}_{\textit{f}} = \{ \text{finite dimensional} \}$

 $\rightarrow \gamma = \aleph_1;$

Examples

1 $\mathcal{K} = \mathbf{Set}$	$\rightarrow \mathcal{K}_f = \{ finite sets \}$	$\rightarrow \gamma = \aleph_1;$
2 $\mathcal{K} = \mathbf{Pos}$	$\rightarrow \mathcal{K}_f = \{ finite posets \}$	$\rightarrow \gamma = \aleph_1;$
${f 8}~{\cal K}={f Bool}$	$ ightarrow \mathcal{K}_{\it f} = \{ { m finite Boolean algebras} \}$	$\rightarrow \gamma = \aleph_1;$
4 $\mathcal{K} = Gra$	$ ightarrow \mathcal{K}_{f} = \{ { t finite graphs} \}$	$\rightarrow \gamma = \aleph_1;$
5 $\mathcal{K} = Cat$	$\rightarrow \ \mathcal{K}_f = \{ \text{finite obj.} \ + \ \text{finite gen. mor.} \}$	
6 $\mathcal{K} = \mathbf{Ab}$	$ ightarrow \mathcal{K}_{f} = \{ ext{finitely presented groups} \}$	
$ \mathbf{\mathcal{C}} \mathcal{K} = R \text{-} \mathbf{Mod} \\ (R \text{ finite ring}) $	$\rightarrow \mathcal{K}_f = \{ \text{finitely presented modules} \}$	

- **8** $\mathcal{K} = \mathbb{R}$ -Vect
- $\rightarrow \mathcal{K}_f = \{ \text{finite dimensional} \}$

1 $\mathcal{K} = \mathbf{Set}$	$\rightarrow \mathcal{K}_f = \{ \text{finite sets} \}$	$\rightarrow \gamma = \aleph_1;$
2 $\mathcal{K} = \mathbf{Pos}$	$\rightarrow \mathcal{K}_f = \{ \text{finite posets} \}$	$\rightarrow \gamma = \aleph_1;$
${f 8}~{\cal K}={f Bool}$	$ ightarrow \mathcal{K}_{f} = \{ ext{finite Boolean algebras} \}$	$\rightarrow \gamma = \aleph_1;$
4 $\mathcal{K} = Gra$	$ ightarrow \mathcal{K}_f = \{ finite graphs \}$	$\rightarrow \gamma = \aleph_1;$
5 $\mathcal{K} = Cat$	$\rightarrow \ \mathcal{K}_{f} = \{ \text{finite obj.} \ + \ \text{finite gen. mor.} \}$	$\rightarrow \gamma = \aleph_2;$
$6\mathcal{K}=\mathbf{Ab}$	$\rightarrow \ \mathcal{K}_{f} = \{ \text{finitely presented groups} \}$	
$\mathcal{O} \ \mathcal{K} = R$ - Mod (R finite ring)	$\rightarrow \mathcal{K}_f = \{ \text{finitely presented modules} \}$	
8 $\mathcal{K} = \mathbb{R}$ -Vect	$\rightarrow \mathcal{K}_f = \{ \text{finite dimensional} \}$	

8 $\mathcal{K} = \mathbb{R}$ -Vect

6 of 10

The Result

1 $\mathcal{K} = \mathbf{Set}$	$\rightarrow \mathcal{K}_f = \{ \text{finite sets} \}$	$\rightarrow \gamma = \aleph_1;$
2 $\mathcal{K} = \mathbf{Pos}$	$\rightarrow \mathcal{K}_f = \{ \text{finite posets} \}$	$ ightarrow \gamma = leph_1;$
${f 8}~{\cal K}={f Bool}$	$ ightarrow \mathcal{K}_{f} = \{ ext{finite Boolean algebras} \}$	$\rightarrow \gamma = leph_1;$
4 $\mathcal{K} = \mathbf{Gra}$	$ ightarrow \mathcal{K}_{f} = \{ {\sf finite graphs} \}$	$\rightarrow \gamma = \aleph_1;$
5 $\mathcal{K} = Cat$	$\rightarrow \ \mathcal{K}_{f} = \{ \text{finite obj.} \ + \ \text{finite gen. mor.} \}$	$\rightarrow \gamma = \aleph_2;$
$6 \mathcal{K} = \mathbf{Ab}$	$\rightarrow \mathcal{K}_{f} = \{ \text{finitely presented groups} \}$	$\rightarrow \gamma = \aleph_2;$
$ \mathcal{K} = R \cdot \mathbf{Mod} \\ (R \text{ finite ring}) $	$\rightarrow \mathcal{K}_f = \{ \text{finitely presented modules} \}$	
8 $\mathcal{K} = \mathbb{R}$ -Vect	$\rightarrow \mathcal{K}_f = \{ \text{finite dimensional} \}$	

8 $\mathcal{K} = \mathbb{R}$ -Vect

1 $\mathcal{K} = Set$	$\rightarrow \mathcal{K}_f = \{ \text{finite sets} \}$	$\rightarrow \gamma = \aleph_1;$
2 $\mathcal{K} = \mathbf{Pos}$	$\rightarrow \mathcal{K}_f = \{ \text{finite posets} \}$	$\rightarrow \gamma = \aleph_1;$
${f 8}~{\cal K}={f Bool}$	$ ightarrow \mathcal{K}_{\it f} = \{ {\sf finite Boolean algebras} \}$	$\rightarrow \gamma = \aleph_1;$
4 $\mathcal{K} = \mathbf{Gra}$	$\rightarrow \ \mathcal{K}_{f} = \{ finite graphs \}$	$\rightarrow \gamma = \aleph_1;$
5 $\mathcal{K} = Cat$	$\rightarrow \mathcal{K}_f = \{ \text{finite obj.} + \text{finite gen. mor.} \}$	$\rightarrow \gamma = \aleph_2;$
6 $\mathcal{K} = Ab$	$\rightarrow \ \mathcal{K}_{\textit{f}} = \{ \text{finitely presented groups} \}$	$\rightarrow \gamma = \aleph_2;$
$ \mathcal{K} = R - \mathbf{Mod} \\ (R \text{ finite ring}) $	$\rightarrow \ \mathcal{K}_f = \{ \text{finitely presented modules} \}$	$\rightarrow \gamma = \aleph_1;$

8 $\mathcal{K} = \mathbb{R}$ -Vect

 $\rightarrow \mathcal{K}_f = \{ \text{finite dimensional} \}$

1 $\mathcal{K} = Set$	$\rightarrow \mathcal{K}_f = \{ \text{finite sets} \}$	$ ightarrow \gamma = leph_1;$
2 $\mathcal{K} = \mathbf{Pos}$	$\rightarrow \mathcal{K}_f = \{ finite posets \}$	$ ightarrow \gamma = leph_1;$
$8 \mathcal{K} = \mathbf{Bool}$	$ ightarrow \mathcal{K}_{f} = \{ ext{finite Boolean algebras} \}$	$ ightarrow \gamma = leph_1;$
4 $\mathcal{K} = $ Gra	$ ightarrow \mathcal{K}_f = \{ finite graphs \}$	$ ightarrow \gamma = leph_1;$
6 $\mathcal{K} = Cat$	$\rightarrow \ \mathcal{K}_f = \{ \text{finite obj.} \ + \ \text{finite gen. mor.} \}$	$\rightarrow \gamma = \aleph_2;$
6 $\mathcal{K} = \mathbf{Ab}$	$ ightarrow \mathcal{K}_{f} = \{ ext{finitely presented groups} \}$	$ ightarrow \gamma = leph_2;$
$ \mathcal{K} = R - \mathbf{Mod} \\ (R \text{ finite ring}) $	$\rightarrow \mathcal{K}_f = \{ \text{finitely presented modules} \}$	$ ightarrow \gamma = leph_1;$
8 $\mathcal{K} = \mathbb{R}$ -Vect	$\rightarrow \mathcal{K}_{f} = \{ \text{finite dimensional} \}$	$\rightarrow \gamma = \mathfrak{c}^{++}.$

Examples

$\bullet \ \mathcal{K} = \mathbf{Set}$	$\rightarrow \mathcal{K}_f = \{ finite sets \}$	$ ightarrow \gamma = leph_1;$
2 $\mathcal{K} = \mathbf{Pos}$	$\rightarrow \mathcal{K}_f = \{ finite posets \}$	$ ightarrow \gamma = leph_1;$
${f 8}~{\cal K}={f Bool}$	$ ightarrow \mathcal{K}_{f} = \{ finite Boolean algebras \}$	$\rightarrow \gamma = leph_1;$
4 $\mathcal{K} = Gra$	$\rightarrow \mathcal{K}_f = \{ \text{finite graphs} \}$	$\rightarrow \gamma = leph_1;$
5 $\mathcal{K} = Cat$	$\rightarrow \ \mathcal{K}_{\textit{f}} = \{ \textit{finite obj.} \ + \ \textit{finite gen. mor.} \}$	$\rightarrow \gamma = \aleph_2;$
6 $\mathcal{K} = \mathbf{Ab}$	$ ightarrow \mathcal{K}_{f} = \{ { t finitely presented groups} \}$	$\rightarrow \gamma = \aleph_2;$
$ \ \textit{$\mathcal{K}=R$-Mod$} \\ (R \ {\rm finite} \ {\rm ring}) $	$\rightarrow \mathcal{K}_f = \{ \text{finitely presented modules} \}$	$\rightarrow \gamma = \aleph_1;$
8 $\mathcal{K} = \mathbb{R}$ -Vect	$\rightarrow \mathcal{K}_f = \{ \text{finite dimensional} \}$	$\rightarrow \gamma = \mathfrak{c}^{++}.$

See also a new preprint of Adámek and Sousa titled "A finitary adjoint functor theorem".

Dualizable objects

An *R*-module *M* is called dualizable if it is finitely generated and projective, iff $M \otimes - \cong \operatorname{Hom}(M^*, -)$ for some M^* .

Dualizable objects

An *R*-module *M* is called dualizable if it is finitely generated and projective, iff $M \otimes - \cong \operatorname{Hom}(M^*, -)$ for some M^* .

Corollary

An *R*-module *M* is dualizable if and only if it is flat and

 $M \otimes -: R$ -**Mod** $\rightarrow R$ -**Mod**

preserves γ -small products.

Note: if *R* is finite, $\gamma = \aleph_1$;

Dualizable objects

An *R*-module *M* is called dualizable if it is finitely generated and projective, iff $M \otimes - \cong \operatorname{Hom}(M^*, -)$ for some M^* .

Corollary

An R-module M is dualizable if and only if it is flat and

 $M \otimes -: R$ -**Mod** $\rightarrow R$ -**Mod**

preserves γ -small products.

Note: if R is finite, $\gamma = \aleph_1$;

Let $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$ be a symmetric monoidal closed and locally finitely presentable category:

Corollary

There exists a regular cardinal γ such that an object $X \in \mathcal{V}$ is dualizable if and only if

$$X\otimes -: \mathcal{V} \longrightarrow \mathcal{V}$$

is γ -continuous.

The enriched version

Fix $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$ a symmetric monoidal closed and locally finitely presentable category. The results above also hold in the \mathcal{V} -enriched setting:

Theorem

Let \mathcal{K} a locally finitely presentable \mathcal{V} -category. There exists a regular cardinal γ such that, given any finitary $F : \mathcal{K} \to \mathcal{L}$, with \mathcal{L} locally finitely presentable, the following are equivalent: **1** F preserves all γ -small weighted limits;

- Ø F preserves all small weighted limits;
- **3** *F* has a left adjoint.

The optimal regular cardinal γ provided by our proofs is one for which:

- $(\mathcal{K}_0)_f$ has less than γ objects (up to isomorphism);
- there exists β such that $\gamma > \beta > \#\mathcal{K}_0(X, Y)$ for each $X, Y \in \mathcal{K}_f$.

=

Small accessible *V*-categories

Introduced independently by Lair, Rosický, and Makkai-Paré:

Accessible (\mathcal{V} -)categories

"locally presentable categories without cocompleteness";

 ${\cal A}$ with filtered colimits $+ \mbox{ a set of finitely}$

- = presentable objects which generate A under filtered colimits;
- = Categories of models of limit/colimit sketches.

In the enriched context they were introduced by Borceux, Quinteiro, and Rosický.

Cauchy (absolute) limits = Limits preserved by any V-functor.

Then:

=

Small accessible V-categories

Introduced independently by Lair, Rosický, and Makkai-Paré:

Accessible (\mathcal{V} -)categories

"locally presentable categories without cocompleteness";

 ${\cal A}$ with filtered colimits $+ \mbox{ a set of finitely}$

- = presentable objects which generate A under filtered colimits;
- = Categories of models of limit/colimit sketches.

In the enriched context they were introduced by Borceux, Quinteiro, and Rosický.

Cauchy (absolute) limits = Limits preserved by any V-functor.

Then:

Corollary

A small V-category is accessible if and only if it is Cauchy complete.

Thank You