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On continuity of functors between locally presentable categories The Result

The theorem

Theorem

Let K be locally finitely presentable. There exists a regular cardinal γ such
that, given any finitary F : K → L, with L locally finitely presentable, the
following are equivalent:

1 F preserves all γ-small limits;

2 F preserves all small limits;

3 F has a left adjoint.
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Locally presentable categories

Locally presentable categories have been introduced by Gabriel and Ulmer in 1971, and have
been thoroughly studied since then (Makkai–Paré, Adámek–Rosický, etc).

Definition

A category K is called locally finitely
presentable if:

• K is cocomplete;

• has a set of finitely presentable objects
which generate K under filtered
colimits;

For an infinitary version replace “finite”
with “λ-small”, for a regular cardinal λ.

These include:

• Finitary varieties;

• Finitary quasivarieties;

• Categories of models of finite limit
sketches;

• Categories of models of essentially
algebraic theories
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Examples

The following are locally finitely presentable:

1 K = Set

2 K = Pos

3 K = Bool

4 K = Gra

5 K = Cat

6 K = Ab

7 K = R-Mod

8 K = Vect

→ Kf = {finite sets};

→ Kf = {finite posets};

→ Kf = {finite Boolean algebras};

→ Kf = {finite graphs};

→ Kf = {finite obj. + finite set of generating mor.};

→ Kf = {finitely presented groups};

→ Kf = {finitely presented modules};

→ Kf = {finite dimensional}.
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On continuity of functors between locally presentable categories The Result

The theorem

Theorem

Let K be locally finitely presentable. There exists a regular cardinal γ such that, given
any finitary F : K → L, with L locally finitely presentable, the following are equivalent:

1 F preserves all γ-small limits;

2 F preserves all small limits;

3 F has a left adjoint.

The optimal regular cardinal γ provided by our proofs is one for which:

• Kf has less than γ objects (up to isomorphism);

• there exists β such that γ > β > #K(X ,Y ) for each X ,Y ∈ Kf .

5 of 10
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Examples

1 K = Set

2 K = Pos

3 K = Bool

4 K = Gra

5 K = Cat

6 K = Ab

7 K = R-Mod
(R finite ring)

8 K = R-Vect

→ Kf = {finite sets}

→ Kf = {finite posets}

→ Kf = {finite Boolean algebras}

→ Kf = {finite graphs}

→ Kf = {finite obj. + finite gen. mor.}

→ Kf = {finitely presented groups}

→ Kf = {finitely presented modules}

→ Kf = {finite dimensional}

→ γ = ℵ1;

→ γ = ℵ1;

→ γ = ℵ1;

→ γ = ℵ1;

→ γ = ℵ2;

→ γ = ℵ2;

→ γ = ℵ1;

→ γ = c++.

See also a new preprint of Adámek and Sousa titled “A finitary adjoint functor theorem”.
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On continuity of functors between locally presentable categories An application

Dualizable objects

An R-module M is called dualizable if it
is finitely generated and projective, iff
M ⊗− ∼= Hom(M∗,−) for some M∗.

Corollary

An R-module M is dualizable if and only
if it is flat and

M ⊗− : R-Mod → R-Mod

preserves γ-small products.

Note: if R is finite, γ = ℵ1;

Let V = (V0,⊗, I ) be a symmetric
monoidal closed and locally finitely
presentable category:

Corollary

There exists a regular cardinal γ such
that an object X ∈ V is dualizable if and
only if

X ⊗− : V −→ V

is γ-continuous.
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The enriched version

Fix V = (V0,⊗, I ) a symmetric monoidal closed and locally finitely presentable category. The
results above also hold in the V-enriched setting:

Theorem

Let K a locally finitely presentable V-category. There exists a regular cardinal γ such that,
given any finitary F : K → L, with L locally finitely presentable, the following are equivalent:

1 F preserves all γ-small weighted limits;

2 F preserves all small weighted limits;

3 F has a left adjoint.

The optimal regular cardinal γ provided by our proofs is one for which:

• (K0)f has less than γ objects (up to isomorphism);

• there exists β such that γ > β > #K0(X ,Y ) for each X ,Y ∈ Kf .
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On continuity of functors between locally presentable categories The enriched case

Small accessible V-categories

Introduced independently by Lair, Rosický, and Makkai–Paré:

Accessible (V-)categories =
“locally presentable categories without

cocompleteness”;

=
A with filtered colimits + a set of finitely
presentable objects which generate A under

filtered colimits;

= Categories of models of limit/colimit sketches.

In the enriched context they were introduced by Borceux, Quinteiro, and Rosický.

Cauchy (absolute) limits = Limits preserved by any V-functor.

Then:

Corollary

A small V-category is accessible if and only if it is Cauchy complete.
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Thank You
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