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Introduction

Enrichment is nowadays a standard tool in category theory; its range of applications is
so vast that it reaches very different areas of mathematics, such as algebra [7, 14, 18],
homotopy theory [4, 12, 17], computer science [3, 6, 16], and functional analysis [11, 15].
Even though additive and abelian categories were introduced earlier and can be under-

stood as some (easy) examples of enrichment, it was only in the 60s, after the development
of differentially graded categories, that people started to think about a general framework
for dealing with categories whose homs have a much richer structure than that of a set.
The first to, independently, envisage the potentials of such a theory were Mac Lane [9]

and Bénabou [1], as well as Linton[10] and Maranda [13]. However, Eilenberg and Kelly
were the ones that actually developed a theory of enrichment in their monograph [5].
Afterwards, the theory started to get studied and many results from ordinary category
theory were transferred into this richer setting, sometimes with effort and some other times
very easily and elegantly.
Later, the theory evolved in new directions by introducing enrichment over bicategories

[2, 19]; however that will not be the framework of this course, where we consider only
enrichment over symmetric monoidal closed categories. A more complete account of all
the results we discuss is given in Kelly’s book [8].



CHAPTER

1
Week 1

1.1 Monoidal categories

In this section we introduce those categories which, equipped with additional structure,
will be our bases of enrichment.
Given an ordinary category C, we can describe the composition operation as a family of

functions
C(B,C)× C(A,B)

−◦−−−−−→ C(A,C)

for any A,B,C ∈ C, satisfying certain axioms. This suggests that we could define a notion
of category enriched over any given category with binary products. However, that would be
very restrictive as, while we would capture many examples (2-dimensional, simplicial, etc)
we would also miss many other important ones (for instance, additive and DG-categories).
To capture all these in the same framework we shall need a category endowed with a

“tensor product”:

Definition 1.1.1. A monoidal category V = (V0,⊗, I, α, λ, ρ) is the data of a category
V0 together with:

(1) an object I ∈ V0 called unit;

(2) a functor −⊗− : V0 × V0 → V0, called tensor product;

(3) natural isomorphisms:

(a) αA,B,C : A⊗ (B ⊗ C) → (A⊗B)⊗ C for any A,B,C ∈ V0;

(b) λA : I ⊗A → A and ρA : A⊗ I → A for any A ∈ V0.

2
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These are subject to the following coherence axioms:

(1) for any A,B,C and D in V0 the diagram below commutes;

A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D)

(A⊗ (B ⊗ C))⊗D

α

α

1⊗ α

α

α⊗ 1

(2) for any A and B in V0 the diagram below commutes.

A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B

α

ρ⊗ 11⊗ λ

Given a monoidal category V = (V0,⊗, I, α, λ, ρ), we usually write V = (V0,⊗, I) and
assume that α, λ and ρ are understood. Let us see some examples:

Example 1.1.2.

(1) If V = (V0,⊗, I, α, λ, ρ) is a monoidal category, then

Vop = (Vop
0 ,⊗op, I, α−1, λ−1, ρ−1)

is a monoidal category.

(2) If V = (V0,⊗, I, α, λ, ρ) is a monoidal category, then

Vrev = (V0, ⊗̂, I, α̂, λ̂, ρ̂)

is a monoidal category where:

(a) A ⊗̂ B := B ⊗A;

(b) α̂A,B,C := α−1
C,B,A;

(c) λ̂A := ρA and ρ̂A := λA.

(3) Let C be any category with finite products; then (C,×, 1) is a monoidal category
where α, ρ and λ are induced by the universal property of the products; this structure
is called the cartesian structure in C. By (1) it follows that if C has finite coproducts,
then (C,+, 0) is a monoidal category; this monoidal structure is called cocartesian.

(4) The category Ab of abelian groups and group homomorphisms, together with the
tensor product ⊗ of abelian groups, and the unit Z, forms a monoidal category. More
generally, the category R-Mod of modules over a commutative ring R is monoidal
with tensor product given by ⊗R and unit R.
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(5) The category DGAb of differentially graded abelian groups (that is, chain com-
plexes) is monoidal with the standard tensor product of chain complexes:

(A⊗B)n :=
⊕

i+j=n

Ai ⊗Bj

with differential generated by the rule

dnA⊗B(a⊗ b) = diAa⊗ b+ (−1)ia⊗ djBb

where a ∈ Ai and b ∈ Bj , with i + j = n. The unit I given by the chain complex
with Z on degree 0 and (0) otherwise.

(6) Let (G, ·, e) be a group (a monoid is enough) and G0 be the discrete category on the
underlying set of G. Then G := (G0, · , e) is a (strict) monoidal category where the
tensor product of two objects is defined by multiplication in G.

To define what a category enriched over V we shall need only a monoidal category; how-
ever, to to certain constructions (like the opposite V-category) we shall need the monoidal
category V to also be symmetric:

Definition 1.1.3. A symmetric monoidal category V = (V0,⊗, I, α, λ, ρ, σ) is the data
of a monoidal category V = (V0,⊗, I, α, λ, ρ) together with a natural isomorphism
σA,B : A⊗B → B ⊗A for any A,B ∈ V0, subject to the following coherences:

(1) for any A,B ∈ V0 we have σB,A ◦ σA,B = 1A⊗B and λA ◦ σA,I = ρA;

(2) for any A,B,C ∈ V0 the diagram below commutes.

(A⊗B)⊗ C

A⊗ (B ⊗ C)

(B ⊗ C)⊗A

(B ⊗A)⊗ C

B ⊗ (A⊗ C)

B ⊗ (C ⊗A)

α

σ

σ ⊗ 1

α

1⊗ σ α

Again, we will write simply V = (V0,⊗, I) for a symmetric monoidal category V where
all the structure maps are understood. Often, we will say that a monoidal category V
is symmetric to mean that V comes equipped with a chosen symmetry (note, a monoidal
category might have more than one symmetry — see Exercise 1.3.4).

Example 1.1.4.

(1) If V = (V0,⊗, I, α, λ, ρ, σ) is symmetric monoidal, then

Vop = (Vop
0 ,⊗op, I, α−1, λ−1, ρ−1, σ−1)

is symmetric monoidal.
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(2) If V = (V0,⊗, I, α, λ, ρ, σ) is symmetric monoidal, then

Vrev = (V0, ⊗̂, I, α̂, λ̂, ρ̂, σ̂)

is symmetric monoidal where σ̂A,B = σB,A.

(3) Let C be any category with finite products; then (C,×, 1) is symmetric monoidal
where σ is induced by the universal property of the products. Similarly, if C has
finite coproducts, then (C,+, 0) is symmetric monoidal.

(4) The monoidal category (Ab,⊗,Z) is symmetric with symmetry

σA,B : A⊗B → B ⊗A

defined by sending a generator a ⊗ b ∈ A ⊗ B to σA,B(a ⊗ b) := b ⊗ a ∈ B ⊗ A.
Similarly, the category R-Mod of modules over a commutative ring R is symmetric
monoidal.

(5) The monoidal category DGAb of differentially graded abelian groups, with the
standard tensor product, is symmetric. The symmetry is defined on the generators
as

σA,B(a⊗ b) := (−1)ijb⊗ a,

where a ∈ Ai and b ∈ Bj .

(6) Let (G, ·, e) be a group. Then G = (G0, · , e) is a symmetric monoidal if and only if
the multiplication is G is commutative; that is, if and only if G is abelian.

Example 1.1.5. The category Grp of groups and group homomorphisms, with the
monoidal closed structure given by the standard tensor product of groups is not sym-
metric.

The last concept, that will be needed to consider for instance enriched categories of
functors, is that of symmetric closed monoidal category.

Definition 1.1.6. A symmetric monoidal closed category V = (V0,⊗, [−,−]) is the data
of a symmetric monoidal category together with functor

[−,−] : Vop
0 × V0 → V0,

called internal hom, such that (−) ⊗ B ⊣ [B,−] for any B ∈ V0. In other words, we
have an isomorphism

V0(A⊗B,C) ∼= V0(A, [B,C])

natural in A,B, and C in V0.

Since the internal-hom functor [−,−], when it exists, is uniquely determined (up to
isomorphism) from the tensor product, we will still denote a symmetric monoidal closed
category by just V = (V0,⊗, I).

Remark 1.1.7. Fixed a symmetric monoidal closed category V, we will often use the tensor-
hom adjunction to “transpose” maps out of a tensor products to maps into an internal-
hom. More precisely, to give a morphism

f : A⊗B −→ C
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is the same as to give a map
f t : A → [B,C]

which is the transpose of f under (−)⊗B ⊣ [B,−]. Since V is also symmetric, the map f
also corresponds to fσ : B ⊗A → C (up to isomorphism). Therefore to give f is also the
same as to give

tf : B → [A,C].

We will use these natural bijections very often when constructing certain V-categories.
The notation with f , f t, and tf will not always be consistent with the one used above;
for instance, if we start with g : B → [A,C] we will use the transpose to denote the other
two maps.

The following examples will provide interesting instances of enrichment.

Example 1.1.8.

(1) The singleton 1 = {∗}, seen as a one-object discrete category, is (trivially) symmetric
monoidal closed.

(2) The category Set of sets and functions with its cartesian structure is symmetric
monoidal closed (also called, cartesian closed). The internal hom is simply given by

[A,B] := Set(A,B).

Indeed, for any sets A,B, and C we have a natural isomorphism

Set(A×B,C) ∼= Set(A,Set(B,C))

given by sending f : A×B → C to f̂ : A → Set(B,C) defined by f̂(a)(b) := f(a, b).

(3) Every (elementary) topos with its cartesian structure is symmetric monoidal closed
by definition. The internal hom is usually denoted by [A,B] := BA.

(4) The category Cat of categories is cartesian closed; the internal hom [A,B] is the
category of functors A → B and natural transformations between them.

(5) The monoidal category (Ab,⊗,Z) is symmetric monoidal closed with internal hom
[A,B] := Ab(A,B) endowed with the pointwise addition which makes it an abelian
group. Similarly, the category R-Mod of modules over a commutative ring R is
symmetric monoidal closed.

(6) The monoidal category DGAb of differentially graded abelian groups, with the
standard tensor product, is symmetric monoidal closed. The internal hom is given
by

[A,B]n :=
∏
i∈Z

Ab(Ai, Bi+n)

and with differential d(f) = dB ◦ f − (−1)nf ◦ dA, where f ∈ [A,B]n.

(7) Let (G, ·, e) be an abelian group. Then G = (G0, · , e) is symmetric monoidal closed
with internal hom

[g, h] := k · h−1

for any g, h ∈ G.

(8) Consider the arrow category 2 = {0 → 1}, then (2,×, 1) is symmetric monoidal
closed (it is cartesian closed as a full subcategory of Set).
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(9) Consider the category Set∗ of pointed sets: objects are pairs (X ∈ Set, x ∈ X), and
morphisms (X, y) → (Y, y) are functions f : X → Y sending x to y. Between any
two objects A = (X,x) and B = (Y, y) we can define a tensor product

A ∧B :=

(
X × Y

A ∨B
, [A ∨B]

)
where A ∨ B := ({x} × Y ) ∪ (X × {y}) ⊆ X × Y , and [A ∨ B] is the single point
defined by the equivalence class of A ∨ B in the quotient. The unit is defined as
I := ({0, 1}, 0). It is easy to define the structure maps that make (Set∗,∧, I) into
a symmetric monoidal category. This is in addition monoidal closed with internal
hom defined as

[A,B] := (Set∗(A,B),∆y)

where B = (Y, y) and ∆y is the constant function at y ∈ Y .

(10) Consider the poset R+ = ([0,∞],≥) as a category. Then (R+,+, 0) forms a sym-
metric monoidal closed category with internal hom

[a, b] =

{
b− a if b ≥ a

0 otherwise

for any a, b ∈ R+.

(11) Consider the categoryMet whose objects are generalized metric spaces (we allow the
distance to take value in [0,∞], everything else is as usual), and whose morphisms
f : (X, dX) → (Y, dY ) are functions f : X → Y such that dY (fx, fx

′) ≤ dX(x, x′).
On Met we have a symmetric monoidal closed structure with unit given by the
singleton 1, tensor product

(X, dX)⊗ (Y, dY ) := (X × Y, dX⊗Y ((x, y), (x
′, y′)) := dX(x, x′) + dY (y, y

′) ),

and internal hom

[(X, dX), (Y, dY )] := (Met((X, dX), (Y, dY )), d(f, g) := sup{dY (fx, gy) |x ∈ X})

for any (X, dX), (Y, dY ) ∈ Met.

1.2 Enriched categories

From now on V = (V0,⊗, I) is assumed to be a monoidal category.

Definition 1.2.1. A V-category C is the data of:

(1) a class Ob(C) whose elements are called the objects of C;

(2) for any A,B ∈ Ob(C) an object C(A,B) ∈ V called the hom-object of morphisms
from A to B;

(3) for any A ∈ Ob(C) an identity map IdA : I → C(A,A) in V;
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(4) for any A,B,C ∈ Ob(C) a composition map

◦A,B,C : C(B,C)⊗ C(A,B) −→ C(A,C)

in V.

These are subject to the following axioms:

(1) Identity: for any A,B ∈ Ob(C) the diagram below commutes.

I ⊗ C(A,B) C(A,B)⊗ I

C(B,B)⊗ C(A,B)

C(A,B)

C(A,B)⊗ C(A,A)

IdB ⊗ 1 1⊗ IdA

◦A,B,B ◦A,A,B

λ ρ

(2) Associativity: for any A,B,C,D ∈ Ob(C) the following diagram

C(C,D)⊗ (C(B,C)⊗ C(A,B)) (C(C,D)⊗ C(B,C))⊗ C(A,B)

C(B,D)⊗ C(A,B)C(C,D)⊗ C(A,C)

C(A,D)

α

◦B,C,D ⊗ 11⊗ ◦A,B,C

◦A,C,D ◦A,B,D

commutes.

The V-category C is called small if the class of objects Ob(C) forms a small set.

From now on we will write A ∈ C to mean that A ∈ Ob(C). When it is clear from the
context, we will simply write ◦ instead of ◦A,B,C for the composition map.
Given a V-category C we can always construct an ordinary category C0 called the un-

derlying category of C. This has the same objects as C and hom-sets

C0(A,B) := V0(I, C(A,B));

identities are the same as in C and the composition map is given by

C0(B,C)× C0(A,B)
β−−→ V0(I, C(B,C)⊗ C(A,B))

V0(I,◦A,B,C)
−−−−−−−−→ C0(A,C)

where β(f, g) := (f ⊗ g)λ−1
I . It is easy to see that the identity and associativity axioms

still hold from C0, making it a category.

Notation 1.2.2. For an enriched category C we will always denote by C0 its underlying
category as defined above. If we say that f : A → B is a morphism in C, we actually mean
that f is a morphism in C0, and therefore a map f : I → C(A,B).
In particular, when we say that f is an isomorphism in C, we mean that it is an isomorphism
in C0.
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We now turn to the definition of V-functor:

Definition 1.2.3. Given V-categories C and D, a V-functor F : C → D is the data of:

(1) a function F : Ob(C) → Ob(D);

(2) for any A,B ∈ C a morphism

FA,B : C(A,B) −→ D(FA,FB)

in V.

These are subject to the following axioms:

(1) for any A ∈ C the triangle below commutes;

I

C(A,A) D(FA,FA)

IdCA

FA,A

IdDFA

(2) for any A,B,C ∈ C the following square

C(B,C)⊗ C(A,B) C(A,C)

D(FB,FC)⊗D(FA,FC) D(FA,FC)

◦C

FB,C ⊗ FA,B FA,C

◦D

commutes.

Given a V-functor F : C → D between enriched categories, we can define an ordinary
functor F0 : C0 → D0, called underlying functor of F , between the corresponding under-
lying categories. The functor F0 acts on objects as F and the action on the hom-sets is
defined as

(F0)A,B := V0(I, FA,B) : C0(A,B) −→ D0(FA,FB).

It is easy to see that F0 preserves identities and composition (since F does) and is therefore
a functor.
For any pair of V-functors F : C → D and G : D → E we define the composite V-functor

GF : C → E by setting GF (A) := G(F (A)) and

(GF )A,B : C(A,B)
FA,B−−−→ D(FA,FB)

GFA,FB−−−−−→ E(GFA,GFB)

for any A,B ∈ C. The fact that GF satisfies the axioms of a V-functor follows by stacking
together the commutativity conditions of F and G.
For any V-category C we have an identity V-functor 1C : C → C defined by 1C(A) = A

and (1C)A,B = 1C(A,B) in V.
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Notation 1.2.4. For an enriched functor F we will always denote by F0 its underlying
functor as defined above. Small V-categories, V-functors, identity V-functors, and compo-
sition of V-functors, form a category V-Cat. The underlying category/functor construction
defines a functor

(−)0 : V-Cat −→ Cat .

When the V-categories are not assumed to be small, we call the induced category V-CAT.

One-object V-categories are important on their own:

Example 1.2.5. Let M be a one object V-category; then M := M(∗, ∗) (where ∗ is the
unique object of M) is endowed with a monoid structure induced by the composition map

◦ : M ⊗M → M

and the identity Id∗ : I → M (the unitality and associativity axioms follow from those of a
V-category). Conversely, any monoid (M,µ, η) in V induces a unique V category M with
a single object ∗, hom-object M(∗, ∗) := M , composition given by µ, and identity given
by η. Under this interpretation, a V-functor between single-object V-categories is just a
monoid morphism.

We now turn to some more concrete examples:

Example 1.2.6.

(1) Let V = (Set,×, 1). Then a V-category is just an ordinary category and a V-functor
is just a functor; therefore V-Cat ∼= Cat.

(2) Let V = 1 be the discrete category with one object (with the trivial monoidal
structure). Then a V-category is completely determined by its objects (every hom-
objects is the same and composition and identities are forced to be the identities of
1). It follows that V-Cat ∼= Set.

(3) Let V = (Cat,×, 1) be the cartesian closed category of small categories. Then a
V-category is commonly called a 2-category. We will study these in more detail
later.

(4) Let V = (Ab,⊗,Z) the the symmetric monoidal closed category of abelian groups.
These V-categories are commonly called pre-additive categories. To give a pre-
additive category C is the same as giving an ordinary category whose hom-sets
C(A,B) come with an abelian group structure, and such that composition − ◦ −
is linear in both variables.

(5) Let V = (DGAb,×, I) be the symmetric monoidal closed category of chain com-
plexes. Then a V-category is commonly called a DG-category. We will study these
in more detail later.

(6) Let V = (2,×, 1), where 2 = {0 → 1} is the arrow category. We will show that to
give a V-category is the same as to give a preorder. Given a V-category C, for any
pair of objects A,B, we have

C(A,B) ∈ {0, 1}

and, the fact that we have maps IdA : 1 → C(A,A), says that C(A,A) = 1 for each
A (and that IdA is the identity map in 2). The composition map

◦A,B,C : C(B,C)× C(A,B) −→ C(A,C)
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is uniquely determined when at least one between C(B,C) and C(A,B) is 0; when
they are both 1 one necessarily has that also C(A,C) = 1 (and hence the composition
map is the identity). Finally, the identity and commutativity axioms do not add any
information (every diagram commutes in 2). Thus, given C, consider the set (or
class) Σ := Ob(C), and define the relation: A ≤ B if and only if C(A,B) = 1.
Because of the arguments above it follows that A ≤ A for any A ∈ Σ, and that
whenever A ≤ B ≤ C then also A ≤ C (composition law). Therefore (Σ,≤) forms a
preorder.

Conversely, if (Σ,≤) is a preorder we can define a V-category C with Ob(C) := Σ
and

C(A,B) =

{
1 if A ≤ B

0 otherwise.

It is easy to see that this is a well defined V-category. Similarly, one shows that to
give a V-functor, under this translation, is the same as giving an order-preserving
function. It follows that V-Cat ∼= Prd is isomorphic to the category of preorders.

It is straightforward to see that a V-category C is skeletal (that is, if A → B is an
isomorphisms then A = B) if and only if the corresponding preorder (Σ,≤) satisfies
the antisymmetry law (A ≤ B ≤ A implies A = B), if and only if (Σ,≤) is a poset.
As a consequence, the full subcategory V-Catsk of V-Cat spanned by the skeletal
V-categories is isomorphic to Pos, the category of posets and order preserving maps.

(7) Let (R+,+, 0) be the monoidal category where R+ = ([0,∞],≥). Then a small
R+-category is a Lawvere metric space: to give a small R+-category we need

(a) a set X (the objects);

(b) for any x, y ∈ X a real number d(x, y) ∈ [0,∞] (the hom-objects);

(c) (identity maps) for any x ∈ X we have 0 ≥ d(x, x);

(d) (composition maps) for any x, y, z ∈ X we have

d(y, z) + d(x, y) ≥ d(x, z).

There are no axioms to satisfy since all diagrams commute in a poset. It follows that
a R+-category is determined by a set X together with a metric d : X ×X → [0,∞]
which satisfies the triangle inequality and for which d(x, x) = 0 for any x ∈ X (note
that d may not be symmetric).

In such a R+-category, two points might be distinct and still have distance equal to
0. This can be avoided (arguing as in the previous example) by considering skeletal
R+-categories.

Similarly, it is easy to see that a V-functor between Lawvere metric spaces (X, dX)
and (Y, dY ) is given by a function f : X → Y such that for any x, y ∈ X we have

dY (fx, fy) ≤ dX(x, y);

indeed, f itself is the assignment on objects, while the condition above is expressed
by the structure maps fx,y. It follows that V-functors can be identified with non-
increasing maps between Lawvere metric spaces.
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1.3 Exercises

Exercise 1.3.1. Prove that the category Ab of abelian groups is not cartesian closed.

Exercise 1.3.2. Let Rng be the category of rings with unit and ring homomorphisms.
Show that there is no symmetric monoidal closed structure on Rng with unit Z.

Exercise 1.3.3. Show that the category Met, of generalized metric spaces and non-
increasing maps, is not cartesian closed.

Exercise 1.3.4. Prove that the monoidal category GAb of graded abelian groups (with
unit and tensor product defined as forDGAb forgetting about the differential) has exactly
two different symmetries given by:

σA,B(a⊗ b) := b⊗ a and τA,B(a⊗ b) := (−1)ijb⊗ a

where a ∈ Ai and b ∈ Bj .

Exercise 1.3.5. Let V = (V0,⊗, I) be symmetric monoidal closed and consider the functor

(−)∗ := [−, I] : Vop
0 −→ V0.

Exhibit a natural transformation (−) ⇒ (−)∗∗ and show that it is not in general an
isomorphism.

Exercise 1.3.6. Assume that V is symmetric monoidal closed. Rewrite the definition of
V-category and V-functor in an equivalent form that only uses the unit I and the internal
hom [−,−], but not the tensor product ⊗.

Exercise 1.3.7. Let V-Mon be the full subcategory of V-Cat spanned by the 1-object
V-categories; we know this to be isomorphic to the category of monoids in V. Show that:

(1) for V = Ab we have Ab-Mon ∼= Rng;

(2) given any R ∈ Rng denote by R̄ the corresponding Ab-category, then to give an
Ab-functor M : R̄ → Ab is the same as to give an R-module;

(3) for any R ∈ Rng, to give an Ab-functor R̄ → Ab is the same as to give a left
R-module.

Exercise 1.3.8. Consider the functor U : V-Cat → Set which sends a V-category C to
its set of objects. Give conditions on V so that U has a right adjoint, and compute the
adjoint explicitly.

Exercise 1.3.9. Let (G, ·, e) be a group. A G-torsor is the data of a set T together with
a group action a : G× T → T satisfying the following condition: for any s, t ∈ T there is
a unique g ∈ G for which a(g, s) = t.
Consider the monoidal category G = (G0, · , e) induced from G as in Example 1.1.2. Show
that every G-torsor can be interpreted as a G-category. What condition do you need to
impose on a G-category so that it is induced by a G-torsor?

Exercise 1.3.10. A category C with both a terminal and a initial object that are isomor-
phic, is called pointed. Show that:

(1) Set∗ is pointed;



1.3 Exercises 13

(2) every pointed category is naturally enriched over Set∗;

(3) if D is a Set∗-category, then: D0 has an initial and a terminal object if and only if
it is pointed.

Exercise 1.3.11. Denote by CMon the symmetric monoidal closed category of commuta-
tive monoids; the tensor product is defined by the property that monoid maps A⊗B → C
are in natural bijection with bilinear mas A×B → C (as in Ab).
We say that a pointed category C has finite direct sums if for any A1, A2 ∈ C there is
an object A1 ⊕ A2 together with maps : Ai

ιi−→ A1 ⊕ A2
πi−→ Ai, for i = 1, 2, such that

(A1 ⊕A2, ι1, ι2) is a coproduct, (A1 ⊕A2, π1, π2) is a product, and the composite πj ◦ ιi is
1Ai for i = j and 0 otherwise. Show that:

(1) CMon has finite direct sums;

(2) every category with finite direct sums is naturally enriched over CMon;

(3) if D is a CMon-category, then: D0 has a finite products if and only if it has finite
coproducts if and only if it has finite direct sums.



CHAPTER

2
Week 2

2.1 Several constructions

When V is symmetric monoidal closed we can endow V0 with a structure of V-category:

Proposition 2.1.1. Let V = (V0,⊗, I) be symmetric monoidal closed. Then there is a
V-category, still denoted by V, whose objects are the same as V0 and for which

V(A,B) := [A,B].

Moreover, the underlying category of V is V0 (so there is no clash in the notation).

Proof. We need to define the identity and composition maps of V. The fact that the
underlying category of V is V0 will follow from the isomorphism V0(I, [A,B]) ∼= V0(A,B).
For any A ∈ V we define the identity on A as the map

λt
A : I → [A,A]

which is transpose to λA : I ⊗A → A under the internal-hom adjunction. Now, given any
pair of objects A,B ∈ V we define

evA,B : [A,B]⊗A → B

as the transpose of 1[A,B] : [A,B] → [A,B] under the same adjunction. It follows that,
given A,B,C ∈ V we can define the composition map ◦A,B,C as the transpose of

[B,C]⊗ [A,C]⊗A
1[B,C]⊗evA,B−−−−−−−−−−→ [B,C]⊗B

evB,C−−−−−→ C.

14
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The fact that these satisfy the identity and associativity axioms follows (arguing by trans-
position) from the fact that ⊗ and I satisfy the coherence axioms of a monoidal cate-
gory.

When V is symmetric we can talk about opposite V-categories and V-functors:

Definition 2.1.2. Assume that V is symmetric. For any V-category C we define a
V-category Cop with:

(1) Ob(Cop) = Ob(C);

(2) for any A,B ∈ Ob(C) we set Cop(A,B) := C(B,A) ∈ V;

(3) for any A ∈ Ob(C) an the identity map I → Cop(A,A) = C(A,A) is the same as
in C;

(4) for any A,B,C ∈ Ob(C) the composition map ◦Cop

A,B,C is defined as

Cop(B,C)⊗ Cop(A,B)
σ−−→ C(B,A)⊗ C(C,B)

◦C,B,A−−−−→ C(C,A) = Cop(A,C)

in V.

If F : C → D is a V-functor, then there is an induced V-functor

F op : Cop −→ Dop

defined by:

(1) F op(A) := F (A) for any A ∈ Cop;

(2) F op
A,B := FB,A for any A,B ∈ Cop.

It follows that taking opposites defines a functor

(−)op : V-Cat −→ V-Cat

moreover, since σ ◦ σ = 1, this is an involution: (Cop)op = C. It is also easy to check that
(Cop)0 = (C0)op.
Example 2.1.3. Let V = (2,×, 1), so that a V-category is a preorder (Σ,≤). Then

(Σ,≤)op = (Σ,≥)

is the preorder obtained from Σ by reflecting the relationship.

Example 2.1.4. Let V = (R+,+, 0), so that a V-category is a Lawvere metric space
X = (M,d). Under this identification, Xop := (M,dop) is the Lawvere metric space with
underlying set M and distance

dop(x, y) := d(y, x).

It follows that a Lawvere metric X space satisfies the symmetry condition (these are
usually called generalized metric spaces) if and only if X = Xop.

Now that we have defined opposite V-categories and seen that V itself has a structure
of V-category, we can construct representable V-functors.
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Definition 2.1.5. Let C be a small V-category and C ∈ C; we denote by

C(−, C) : Cop −→ V

the V-functor defined as follows:

(1) an object A ∈ C is sent to C(−, C)(A) := C(A,C) ∈ V;

(2) for any A,B ∈ C the map

C(−, C)A,B : C(B,A) −→ [C(A,C), C(B,C)]

is defined as the transpose of the composition morphism ◦B,A,C .

That this preserves composition and identities follows from the fact that composition in
C is associative and unital.

Applying the definition to Cop (since (Cop)op = C) we also obtain the covariant repre-
sentable V-functors

C(C,−) : C −→ V

for any C ∈ C.

Example 2.1.6. Consider V = (2,×, 1), so that a V-category is just a preorder Σ. For
any x ∈ Σ, the representable V-functor

Σ(−, x) : Σop → 2

sends y to 1 if y ≤ x, and to 0 otherwise. So, it can be identified with the lower set Ix ⊆ Σ
defined by all elements of Σ that are smaller than x.

Example 2.1.7. Consider V = (R+,+, 0), for which V-categories are Lawvere metric
spaces. Given a Lawvere metric space X and x ∈ X, the representable

X(−, x) : Xop → R

is simply the distance function dX(−, x).

Notation 2.1.8. Given a morphism f : A → B in a V-category C, for any C ∈ C we have
induced morphisms

C(C, f) : C(C,A) −→ C(C,B)

and
C(f, C) : C(B,C) −→ C(A,C)

in V. The former is defined as the composite

C(C,A) λ−1

−−−→ I ⊗ C(C,A) f⊗1−−→ C(A,B)⊗ C(C,A) ◦−−→ C(A,C),

the latter is defined similarly using ρ−1.

2.2 V-categories of V-functors
For the following definition we assume V to be a monoidal category.
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Definition 2.2.1. Given V-categories C and D, and V-functors F,G : C → D, a V-
natural transformation η : F ⇒ G is given by a family

{ηA : FA → GA}A∈C

of morphisms in D, subject to the commutativity of the square

C(A,B) D(FA,FB)

D(GA,GB) D(FA,GB)

FA,B

GA,B D(FA, ηB)

D(ηA, GB)

for any A,B ∈ C.

Any V-natural transformation η : F ⇒ G also defines an ordinary natural transformation

η : F0 ⇒ G0

between the underlying functors. Indeed, pre-composing the square above with maps
I → C(A,B), which are the morphisms of C0, one obtains the usual naturality square.

Remark 2.2.2. By adding V-natural transformations as 2-cells, we can see V-Cat as a 2-
category. Most of the results involving V-Cat can then be extended to the 2-dimensional
setting. However, for the purposes of this course we will keep considering V-Cat as an
ordinary category.

Example 2.2.3. Let V = (2,×, 1). Then, to give two V-functors is the same as giving two
order preserving maps f, g : Σ → Θ between preorders. To give a natural transformation
η : f ⇒ g is the same as specifying that for any x ∈ Σ we have

fx ≤ gx,

since we have a (necessarily unique) map 1 → Σ(fx, gx) if and only if fx ≤ gx (the
naturality square becomes trivial in this case). It follows that, given f, g as above, we can
have at most one V-natural transformation from f to g, denote f ≤ g, and this exists if
and only if fx ≤ gx for any x ∈ Σ.

Example 2.2.4. Let V = (R+,+, 0). Then, to give two V-functors is the same as giving
two non-increasing maps f, g : X → Y between Lawvere metric spaces. To give a natural
transformation η : f ⇒ g is the same as saying that for any x ∈ X we have

dY (fx, gx) = 0

since the only morphism out of the unit 0 in R+ is the identity. It follows that, given f, g
as above, we can have at most one V-natural transformation from f to g and this exists if
and only if dY (fx, gx) = 0 for any x ∈ Σ.

From now on we assume V = (V0,⊗, I) to be symmetric monoidal closed and complete;
this is needed define a V-category structure on V-Cat(B, C).
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Definition 2.2.5. Given a small V-category B and a V-category C we define a new
V-category [B, C] for which:

(1) The class of objects Ob([B, C]) is given by all V-functors B → C.

(2) For any F,G ∈ [B, C] the hom-object is defined as the equalizer below

[B, C](F,G)

∏
B∈B

C(FB,GB)

∏
C,D∈B

[B(C,D), C(FC,GD)]

eF,G

vu

in V, where the components of u and v at C,D ∈ B are given respectively by the
transposes of the maps below.

B(C,D)⊗ (
∏

B∈B C(FB,GB))

C(GC,GD)⊗ C(FC,GC)

C(FC,GD)

(
∏

B∈B C(FB,GB))⊗ B(C,D)

C(FD,GD)⊗ C(FC,FD)

C(FC,GD)

GC,D ⊗ πC

◦

πD ⊗ FC,D

◦

(3) For any F ∈ [B, C] the identity map IdF : I → [B, C](F, F ) is induced by the
universal property of the equalizer since the diagonal map below

I [B, C](F, F )

∏
B∈B C(FB,FB)

IdF

eF,F
(IdFB)B∈B

equalizes u and v.

(4) for any F,G,H ∈ [B, C] the composition map

◦ : [B, C](G,H)⊗ [B, C](F,G) −→ [B, C](F,H)

is induced by the universal property of the equalizer since the bottom left com-
posite below
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[B, C](G,H)⊗ [B, C](F,G) [B, C](F,H)

∏
B∈B(C(GB,HB)⊗ C(FB,GB))

∏
B∈B C(FB,HB)

◦

(eBG,H ⊗ eBF,G)B∈B eF,H

∏
B∈B

◦C

equalizes the u and v involved in the definition of [B, C](F,H).

The fact that composition is associative and unital can be checked componentwise using
that composition in C is associative and unital.

Remark 2.2.6. It is easy to see that to give a map α : I → [B, C](F,G) is the same as to
give a V-natural transformation from F to G. It follows then that

[B, C]0

is the category if V-functors and V-natural transformations between them.

For a small C, we call [Cop,V] the V-category of (enriched) presheaves on C.

Example 2.2.7. Consider V = (2,×, 1), so that a V-category is just a preorder. It is easy
to see that, given two preorders Σ and Ω the V-category of presheaves

[Σ,Ω]

is the preorder whose elements are order preserving functions f : Σ → Ω, and where f ≤ g
if and only if f(x) ≤ g(x) in Ω for any x ∈ Σ.

Example 2.2.8. Consider V = (R+,+, 0), for which V-categories are Lawvere metric
spaces. Given Lawvere metric spaces X and Y , then

[X,Y ] = (Met(X,Y ), d[X,Y ]),

where Met(X,Y ) is the set of non-increasing functions from X to Y and

d[X,Y ](f, g) := sup{dY (fx, gy) |x ∈ X}.

2.3 Exercises

Exercise 2.3.1. Assume that V is symmetric monoidal closed. Show that the tensor
product and internal hom induce V-functors

X ⊗−, [X,−] : V −→ V

for any X ∈ V.

Exercise 2.3.2. Assume that I is a generator of V0; that is, V0(I,−) : V0 → Set is faithful.
Show that to give a V-natural transformation F ⇒ G between V-functors is the same as
giving a natural transformation F0 ⇒ G0 between the underlying functors.

Exercise 2.3.3. Given V-functors F,G : B → C and an object X ∈ V; prove that there is
a bijection (natural in F,G, and X) between:
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(1) morphisms X → [B, C](F,G) in V;

(2) V-natural transformations F ⇒ [X,G−];

(3) V-natural transformations X ⊗ F (−) ⇒ G.

In other words

V0(X, [B, C](F,G)) ∼= [B, C]0(F, [X,G−]) ∼= [B, C]0(X ⊗ F (−), G).

Exercise 2.3.4. Assume that V is symmetric monoidal closed and complete. Define
a symmetric monoidal closed structure V-Cat whose interna-hom coincides with the V-
category [C,D] of Definition 2.2.5

Exercise 2.3.5. Assume that in V coproducts exist, and that the tensor product functor
preserves these in both variables (the latter happens in particular whenever V is symmetric
monoidal closed). Show then that (−)0 : V-Cat −→ Cat has a left adjoint

(−)V : Cat → V-Cat .

Hint: given an ordinary category B, use the coproducts of the unit to define the hom-
objects of BV .



CHAPTER

3
Week 3

3.1 Yoneda

We now wish to prove the enriched Yoneda lemma, stating that for any F : Cop → V and
C ∈ C we have an isomorphism

FC ∼= [Cop,V](C(−, C), F )

in V. To do so we fist need to construct the morphism ηC,F : FC → [Cop,V](C(−, C), F ),
between these two objects, that will be proven to be invertible. This is induced by the uni-
versal property of the equalizer defining [Cop,V](C(−, C), F ), and applied to the diagonal
map

FC [Cop,V](C(−, C), F )

∏
A∈C [C(A,C), FA]

ηC,F

(F t
C,A)A∈C

which equalizes the u and v involved in the definition.

Lemma 3.1.1. For any small V-category C, V-functor F : Cop → V, and object C ∈ C the
map

ηC,F : FC −→ [Cop,V](C(−, C), F )

is an isomorphism in V.

Proof. By definition of ηC,F , it is enough to show that the diagram below

21
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FC
∏

A∈C [C(A,C), FA]
∏

B,B′∈C [C(B′, B), [C(B,C), FB′]]
w u

v

is an equalizer, where w := (F t
C,A)A∈C . Note that for any X ∈ V, by unwinding the

definition of u and v, to give a map α : X →
∏

A∈C [C(A,C), FA] equalizing u and v is the
same as giving a family of arrows

(αA : X → [C(A,C), FA])A∈C

for which the following square commutes

X ⊗ C(A,C)⊗ C(B,A) FA⊗ C(B,A)

X ⊗ C(B,C) FB

αt
A ⊗ 1

1⊗ ◦B,A,C tFA,B

αt
B

for any A,B ∈ C, where (−)t and t(−) denote (different, but uniquely determined) trans-
positions under the tensor-hom adjunction.
Now, for any such α = (αA : X → [C(A,C), FA])A∈C , we can define the composite

α̂ : X
ρ−1

−−−→ X ⊗ I
1⊗1C−−−→ X ⊗ C(C,C)

αt
C−−→ FC.

We first show that wα̂ = α. This holds if and only if F t
C,Aα̂ = αA for any A ∈ C, if and

only if the following triangle

X ⊗ C(A,C) FC ⊗ C(A,C)

FA

α̂⊗ 1

tFC,A

αt
A

commutes for any A ∈ C. But this can be decomposed into the diagram below

X ⊗ C(A,C) X ⊗ C(C,C)⊗ C(A,C)

X ⊗ C(A,C)

FC ⊗ C(A,C)

FA

(1⊗ 1C)ρ−1 ⊗ 1

1⊗ ◦A,C,C
1

αt
C ⊗ 1

tFC,A

αt
A

where the top composite is still α̂⊗ 1, the left triangle commutes by unitality of composi-
tion, and the square on the right commutes since α equalizes u and v. Thus, wα̂ = α; it
remains to show that α̂ is the unique with this property.
Given any other x : X → FC such that wx = α, then looking at the component of w at

C, we obtain F t
C,Cx = αC . Consider then the following diagram
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X

X ⊗ C(C,C)

FC

FC ⊗ C(C,C)

FC

(1⊗ 1C)ρ−1

x

1⊗ 1C

x⊗ 1
1

tFC,C

αt
C

where the top part commutes by unitality, and the bottom triangle commutes by trans-
posing the equality F t

C,Cx = αC . This says exactly that x = α̂, and we are done.

Definition 3.1.2. We say that a V-functor F : C → D is fully faithful if for any A,B in
C the structure map

FA,B : C(A,B) −→ D(FA,FB)

is an isomorphism in V. If moreover, for any D ∈ D there exists C ∈ C and an
isomorphism

FC
∼=−−→ D

in D, we say that F is an equivalence of V-categories.

Let’s make this more concrete with our favourite examples:

Example 3.1.3. Given V = (2,×, 1), for which V-category are preorder. Then, an order
preserving map f : (Σ,≤) → (Θ,≤) is fully faithful if and only if it is order reflecting:

if f(x) ≤ f(y) then x ≤ y

for any x, y ∈ Σ. Moreover, f is an equivalence if in addition for any y ∈ Θ there exists
x ∈ Σ such that f(x) ≤ y ≤ f(x).

Example 3.1.4. Given V = (R+,+, 0), so that V-categories are Lawvere metric spaces.
Then, a non-increasing map f : (X, dX) → (Y, dY ) is fully faithful if and only if it is an
isometry:

dY (fx, fy) = dX(x, y)

for any x, y ∈ X. In addition, the map f if an equivalence if for every y ∈ Y there exists
x ∈ X such that dY (fx, y) = 0 and dY (y, fx) = 0.

Let us now construct the Yoneda V-functor (which we shall prove is fully faithful):

Definition 3.1.5. Given a small V-category C we define a V-functor

Y : C −→ [Cop,V]

as follows:

(1) for any C ∈ C we set YC := C(−, C);

(2) For any B,C ∈ C the map

YB,C : C(B,C) −→ [Cop,V](C(−, B), C(−, C))
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is ηB,C(−,C) from the Yoneda isomorphism above. This is induced by the universal
property of the equalizer since the diagonal map below

C(B,C) [Cop,V](C(−, B), C(−, C))

∏
A∈C [C(A,B), C(A,C)]

YB,C

(C(A,−)B,C)A∈C

equalizes the u and v involved in the definition of [Cop,V](C(−, B), C(−, C)).

The fact that this is a well-defined V-functor follows from the fact that composition in
C is associative and unital (checking everything componentwise).

Theorem 3.1.6. For any small V-category C the V-functor

Y : C −→ [Cop,V]

is fully faithful.

Proof. This follows immediately from Lemma 3.1.1 since the structure maps of Y are all
of the form ηB,C(−,C), and this are isomorphisms.

Exercise 3.1.7. Consider V = 1, where we have seen that V-Cat ∼= Set; then for any set
X the presheaves

[X, 1] ∼= 1

are all trivial, since there is only one map into V. Then the Yoneda lemma says that the
(unique) function

X −→ 1

is fully faithful. This, at first, might seem very counter-intuitive.
Note that, under the isomorphism V-Cat ∼= Set, the underlying category functor

(−)0 : Set → Cat sends a set X to the indiscrete category with X-many objects and
where all homs are singletons (so every object is uniquely isomorphic to any other object).
Then the Yoneda embedding is just saying that every set X, seen as an indiscrete category,
is equivalent to the terminal category.

Example 3.1.8. Consider V = (2,×, 1), where V-categories are preorders. Given a
preorder Σ, order preserving maps f : Σop → 2 are in bijection with (possibly empty)
lower sets in Σ; that is, subsets I ⊆ Σ such that for any x ∈ I and y ∈ Σ, if y ≤ x then
y ∈ I. The bijection is given by defining x ∈ I if and only if fx = 1.
For any x ∈ Σ we have a principal lower set Ix defined by all the elements lower than

x; this corresponds to the representable Σ(−, x) : Σop → 2. Denote by L(Σ) the poset of
lower sets in Σ ordered by inclusion; then

[Σop,2] ∼= L(Σ)

and the Yoneda embedding says that the map

Σ −→ L(Σ) : x 7→ Ix
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is an isometry.
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