MUNI

Flatness, weakly-lex colimits and free exact completions

Giacomo Tendas

7 July 2023

Exact completion of lex categories

- Exact categories where introduced by Barr as an "ordinary" counterpart of abelian categories.
- Later free exact completions have been introduced:

Definition (Carboni–Magno)

Let \mathcal{C} be lex. The free (Barr-)exact completion of \mathcal{C} is an exact category \mathcal{C}_{ex} t.w. $K: \mathcal{C} \hookrightarrow \mathcal{C}_{ex}$ for which Lan_K induces an equivalence:

$$\mathsf{Lex}(\mathcal{C},\mathcal{E})\simeq\mathsf{Ex}(\mathcal{C}_{ex},\mathcal{E})$$

for any exact \mathcal{E} .

- \mathcal{C}_{ex} is obtained by freely adding coequalizers of pseudo-equivalence relations to \mathcal{C} .
- $\mathcal{C} \hookrightarrow \mathcal{C}_{ex} \hookrightarrow [\mathcal{C}^{op}, \textbf{Set}]$ closure under finite limits and coequalizers of equivalence relations.

Exact completions

Φ -exact completion of lex categories

Garner–Lack introduce a general notion of Φ -exactness:

 $\Phi=\,$ "class of colimits to which we impose exactness conditions" .

Definition (Garner–Lack)

Let \mathcal{C} be lex. The free Φ -exact completion of \mathcal{C} is a Φ -exact category $\Phi_I \mathcal{C}$ t.w. $\mathcal{K}: \mathcal{C} \hookrightarrow \Phi_I \mathcal{C}$ for which Lan $_{\mathcal{K}}$ induces an equivalence:

$$\mathsf{Lex}(\mathcal{C},\mathcal{E})\simeq \Phi\text{-}\mathsf{Ex}(\Phi_{I}\mathcal{C},\mathcal{E})$$

for any Φ -exact \mathcal{E} .

Note: $\mathcal{C} \hookrightarrow \Phi_I \mathcal{C} \hookrightarrow [\mathcal{C}^{op}, \mathbf{Set}]$ is the closure under finite limits and Φ -lex colimits. Examples: Regular and Barr-exact categories, (infinitary) lextensive categories, pretopoi, etc. Problem: does not capture all kinds of free exact completions.

Exact completions

Exact completion of weakly-lex categories

• A diagram $H: \mathcal{D} \to \mathcal{C}$ has a weak limit in \mathcal{C} if there is \mathcal{C} t.w. $\delta: \Delta \mathcal{C} \to H$ such that

• If C has weak finite limits, then C_{ex} , obtained by freely adding coequalizers of pseudo-equivalence relations, is exact. (Carboni–Vitale)

Exact completions

Exact completion of weakly-lex categories

• A diagram $H: \mathcal{D} \to \mathcal{C}$ has a weak limit in \mathcal{C} if there is C t.w. $\delta: \Delta C \to H$ such that

• If C has weak finite limits, then C_{ex}, obtained by freely adding coequalizers of pseudo-equivalence relations, is exact. (Carboni–Vitale)

Theorem (Carboni–Vitale)

Let C be weakly lex and $K: C \hookrightarrow C_{ex}$ be the inclusion. Then Lan_K induces an equivalence:

$$_{-}\mathsf{co}(\mathcal{C},\mathcal{E})\simeq\mathsf{Ex}(\mathcal{C}_{\mathsf{ex}},\mathcal{E})$$

for any exact \mathcal{E} .

But what is on the left-hand-side?

Left covering functors

Let $F : \mathcal{C} \to \mathcal{E}$ be a functor from a weakly lex category \mathcal{C} to a regular category \mathcal{E} .

Definition (Carboni–Vitale/Hu)

We say that F is left covering if for any finite diagram $H: \mathcal{D} \to \mathcal{C}$ and any weak limit $C \in \mathcal{C}$ of H, the comparison map

 $FC \rightarrow \lim(FH)$

is a regular epimorphism.

- if C is lex, then: left covering = lex;
- if $\mathcal{E} = \mathbf{Set}$, then: left covering = flat;

Questions:

- for general ${\mathcal C}$ and ${\mathcal E}$ do we have a "more formal" description?
- can we capture these in the context of Φ -lex colimits?

The following are equivalent for $F : \mathcal{C} \to \mathbf{Set}$: **1** F is flat (i.e. El(F) is filtered); **2** $Lan_YF : [\mathcal{C}^{op}, \mathbf{Set}] \to \mathbf{Set}$ is lex; **3** $Lan_YF : [\mathcal{C}^{op}, \mathbf{Set}] \to \mathbf{Set}$ preserves finite limits of representables.

• Replace **Set** with any lex \mathcal{E} ;

Definition

A functor $F: \mathcal{C} \to \mathcal{E}$, into a lex category \mathcal{E} , is flat if and only if for any finite diagram $H: \mathcal{D} \to \mathcal{C}$, we have

???

```
The following are equivalent for F: \mathcal{C} \to \mathbf{Set}:

1 F is flat (i.e. El(F) is filtered);

2 Lan_Y F: [\mathcal{C}^{op}, \mathbf{Set}] \to \mathbf{Set} is lex;

3 Lan_Y F: [\mathcal{C}^{op}, \mathbf{Set}] \to \mathbf{Set} preserves finite limits of representables.
```

• Replace **Set** with any lex \mathcal{E} ;

Definition

A functor $F: \mathcal{C} \to \mathcal{E}$, into a lex category \mathcal{E} , is flat if and only if for any finite diagram $H: \mathcal{D} \to \mathcal{C}$, we have

 $\operatorname{Lan}_Y F(\operatorname{lim} YH) \cong \operatorname{lim}(\operatorname{Lan}_Y F \circ YH).$

```
The following are equivalent for F: \mathcal{C} \to \mathbf{Set}:

1 F is flat (i.e. El(F) is filtered);

2 Lan_Y F: [\mathcal{C}^{op}, \mathbf{Set}] \to \mathbf{Set} is lex;

3 Lan_Y F: [\mathcal{C}^{op}, \mathbf{Set}] \to \mathbf{Set} preserves finite limits of representables.
```

• Replace **Set** with any lex \mathcal{E} ;

Definition

A functor $F: \mathcal{C} \to \mathcal{E}$, into a lex category \mathcal{E} , is flat if and only if for any finite diagram $H: \mathcal{D} \to \mathcal{C}$, we have

 $\operatorname{Lan}_Y F(\operatorname{lim} YH) \cong \operatorname{lim} FH.$

```
The following are equivalent for F : C \to \mathbf{Set}:

1 F is flat (i.e. El(F) is filtered);

2 Lan_Y F : [C^{op}, \mathbf{Set}] \to \mathbf{Set} is lex;

3 Lan_Y F : [C^{op}, \mathbf{Set}] \to \mathbf{Set} preserves finite limits of representables.
```

• Replace **Set** with any lex \mathcal{E} ;

Definition

A functor $F: \mathcal{C} \to \mathcal{E}$, into a lex category \mathcal{E} , is flat if and only if for any finite diagram $H: \mathcal{D} \to \mathcal{C}$, we have

$$\operatorname{colim}\left(\operatorname{\mathsf{El}}(\operatorname{lim} YH) \xrightarrow{\pi} \mathcal{C} \xrightarrow{F} \operatorname{\mathbf{Set}}\right) \cong \operatorname{lim} FH.$$

```
The following are equivalent for F: C → Set:
F is flat (i.e. El(F) is filtered);
Lan<sub>Y</sub>F: [C<sup>op</sup>, Set] → Set is lex;
Lan<sub>Y</sub>F: [C<sup>op</sup>, Set] → Set preserves finite limits of representables.
```

• Replace **Set** with any lex \mathcal{E} ;

Definition

A functor $F: \mathcal{C} \to \mathcal{E}$, into a lex category \mathcal{E} , is flat if and only if for any finite diagram $H: \mathcal{D} \to \mathcal{C}$, we have

$$\operatorname{colim}\left(\mathcal{C}/H \xrightarrow{\pi} \mathcal{C} \xrightarrow{F} \mathcal{E}\right) \cong \lim FH.$$

Flatness and free Φ -exact completions

Some properties:

- if $\mathcal{E} = \mathbf{Set}$, then: flat = flat;
- if C is lex, then: flat = lex;
- if \mathcal{E} is a Grothendieck topos, then: F is flat iff $\operatorname{Lan}_Y F : [\mathcal{C}^{\operatorname{op}}, \operatorname{\mathbf{Set}}] \to \mathcal{E}$ is lex;

Back to Φ -lex colimits. Given a small C, consider $\Phi_l C$ to be the closure of C in $[C^{op}, Set]$ under finite limits and Φ -lex colimits.

Flatness and free Φ -exact completions

Some properties:

- if $\mathcal{E} = \mathbf{Set}$, then: flat = flat;
- if C is lex, then: flat = lex;
- if \mathcal{E} is a Grothendieck topos, then: F is flat iff $\operatorname{Lan}_Y F : [\mathcal{C}^{\operatorname{op}}, \operatorname{Set}] \to \mathcal{E}$ is lex;

Back to Φ -lex colimits. Given a small C, consider $\Phi_l C$ to be the closure of C in $[C^{op}, Set]$ under finite limits and Φ -lex colimits.

Definition

The inclusion $K: \mathcal{C} \hookrightarrow \Phi_I \mathcal{C}$ exhibits $\Phi_I \mathcal{C}$ as the free Φ -exact completion of \mathcal{C} if left Kan extending along K induces an equivalence

 $\mathsf{Flat}(\mathcal{C},\mathcal{E})\simeq \Phi\text{-}\mathsf{Ex}(\Phi_{\textit{I}}\mathcal{C},\mathcal{E})$

for any Φ -exact category \mathcal{E} .

The main theorem

Given \mathcal{C} , define

$$\mathcal{C} \subseteq \Phi^{\diamond}[\mathcal{C}] \subseteq [\mathcal{C}^{\mathsf{op}}, \mathbf{Set}]$$

by adding those *M* for which *M*-weakly-lex colimits exist in every Φ -exact \mathcal{E} .

 \star In the exact case, objects of $\Phi^\diamond[\mathcal{C}]$ are coequalizers of pseudo equavelence relations between representables.

Theorem

The following are equivalent for a small category C:

1 $K: \mathcal{C} \hookrightarrow \Phi_{I}\mathcal{C}$ exhibits $\Phi_{I}\mathcal{C}$ as the free Φ -exact completion of \mathcal{C} ;

$$\mathbf{O} \Phi^{\diamond}[\mathcal{C}] = \Phi_{I}\mathcal{C};$$

3 $\Phi^{\diamond}[\mathcal{C}]$ has finite limits of diagrams landing in \mathcal{C} .

 \star In the exact case, finite limits in $\Phi^\diamond[\mathcal{C}]$ of diagrams landing in \mathcal{C} are weak limits.

() Φ_{reg} and Φ_{ex} for regular and exact categories;

The following are equivalent for a small Cauchy complete category C:

- C has a free regular completion;
- C has a free exact completion;
- \mathcal{C} is weakly lex.

For such a \mathcal{C} , a functor $F: \mathcal{C} \to \mathcal{E}$ into a regular category \mathcal{E} is flat if and only if it is left covering: for any finite diagram $H: \mathcal{D} \to \mathcal{C}$ and any weak limit $\mathcal{C} \in \mathcal{C}$ of H, the comparison map

 $FC \rightarrow \lim(FH)$

is a regular epimorphism.

Examples

- **1** Φ_{reg} and Φ_{ex} for regular and exact categories;
- **2** Φ_{ilext} for infinitary lextensive categories;

The following are equivalent for a small Cauchy complete category C:

- C has a free infinitary lextensive completion;
- C has finite multilimits.

 $H: \mathcal{D} \to \mathcal{C}$ has a multilimit in \mathcal{C} if there exists a family of objects $(C_i)_{i \in I}$ in C together with cones $\delta_i : \Delta C_i \to H$ for which:

Examples

- **1** Φ_{reg} and Φ_{ex} for regular and exact categories;
- **2** Φ_{ilext} for infinitary lextensive categories;

The following are equivalent for a small Cauchy complete category C:

- C has a free infinitary lextensive completion;
- C has finite multilimits.

For such a C, a functor $F: \mathcal{C} \to \mathcal{E}$ into an infinitary lextensive category \mathcal{E} is flat if and only if it is finitely multicontinuous: for any finite diagram $H: \mathcal{D} \to \mathcal{C}$ with multilimit $(C_i)_{i \in I}$ the comparison

$$\sum_{i\in I} FC_i \xrightarrow{\cong} \lim FH$$

is an isomorphism.

- 1) Φ_{reg} and Φ_{ex} for regular and exact categories;
- **2** Φ_{ilext} for infinitary lextensive categories;
- \bullet Φ_{lext} for lextensive categories;

The following are equivalent for a small Cauchy complete category \mathcal{C} :

- C has a free lextensive completion;
- C has finite multi-finite limits.

 $H: \mathcal{D} \to \mathcal{C}$ has a multi-finite limit in \mathcal{C} if there is a finite family of objects $(C_i)_{i \leq n}$ in \mathcal{C} together with cones $\delta_i : \Delta C_i \to H$ for which:

Examples

- **1** Φ_{reg} and Φ_{ex} for regular and exact categories;
- **2** Φ_{ilext} for infinitary lextensive categories;
- **3** Φ_{lext} for lextensive categories;

The following are equivalent for a small Cauchy complete category C:

- C has a free lextensive completion:
- C has finite multi-finite limits.

For such a C, a functor $F: \mathcal{C} \to \mathcal{E}$ into a lextensive category \mathcal{E} is flat if and only if for any finite diagram $H: \mathcal{D} \to \mathcal{C}$ with multi-finite limit $(C_i)_{i \leq n}$ the comparison

$$\sum_{i\leq n} FC_i \xrightarrow{\cong} \lim FH.$$

is an isomorphism.

Examples

- 1) Φ_{reg} and Φ_{ex} for regular and exact categories;
- **2** Φ_{ilext} for infinitary lextensive categories;
- \bullet Φ_{lext} for lextensive categories;

The following are equivalent for a small Cauchy complete category \mathcal{C} :

- C has a free pretopos completion;
- C has finite fc-limits.

 $H: \mathcal{D} \to \mathcal{C}$ has a fc-limit in \mathcal{C} if there is a finite family of objects $(C_i)_{i \leq n}$ in \mathcal{C} together with cones $\delta_i : \Delta C_i \to H$ for which:

Examples

- 1) Φ_{reg} and Φ_{ex} for regular and exact categories;
- **2** Φ_{ilext} for infinitary lextensive categories;
- \bullet Φ_{lext} for lextensive categories;

The following are equivalent for a small Cauchy complete category \mathcal{C} :

- C has a free pretopos completion;
- C has finite fc-limits.

For such a \mathcal{C} , a functor $F : \mathcal{C} \to \mathcal{E}$ into a pretopos \mathcal{E} is flat if and only if for any fc-limit $(C_i)_{i \leq n}$ of a finite diagram H in \mathcal{C} , the comparison

$$\sum_{i\leq n} FC_i \twoheadrightarrow \lim(FH)$$

is a regular epimorphism.

Examples

- **1** Φ_{reg} and Φ_{ex} for regular and exact categories;
- **2** Φ_{ilext} for infinitary lextensive categories;
- **3** Φ_{lext} for lextensive categories;
- **4** $\Phi_{\text{pret}} = \Phi_{\text{ex}} \cup \Phi_{\text{lext}}$ for pretopoi;
- **6** Φ_{gp} of free groupoid actions, for quasi-based categories;

The following are equivalent for a small Cauchy complete category C:

- C has a free Φ -exact completion:
- C has finite polylimits.

polylimits = multilimits but the factorization is unique up to unique automorphism.

Examples

- **1** Φ_{reg} and Φ_{ex} for regular and exact categories;
- **2** Φ_{ilext} for infinitary lextensive categories;
- **3** Φ_{lext} for lextensive categories;
- **4** $\Phi_{\text{pret}} = \Phi_{\text{ex}} \cup \Phi_{\text{lext}}$ for pretopoi;
- **6** Φ_{gp} of free groupoid actions, for quasi-based categories;

The following are equivalent for a small Cauchy complete category C:

- C has a free Φ -exact completion:
- C has finite polylimits.

For such a \mathcal{C} , a functor $F: \mathcal{C} \to \mathcal{E}$ into a lextensive category \mathcal{E} is flat if and only if it is finitely polycontinuous.

- 1) Φ_{reg} and Φ_{ex} for regular and exact categories;
- **2** Φ_{ilext} for infinitary lextensive categories;
- \bullet Φ_{lext} for lextensive categories;
- **6** Φ_{gp} of free groupoid actions, for quasi-based categories;
- **6** $\Phi_{\mathbb{D}} = \mathbb{D}$ -filtered diagrams, for a sound class \mathbb{D} .

The following are equivalent for a small Cauchy complete category \mathcal{C} :

- \mathcal{C} has a free Φ -exact completion;
- $Ind_{\mathbb{D}}(\mathcal{C})$ has finite limits of diagrams in \mathcal{C} .

Thank You