ANNOTAZIONI

I comerci delle señde dinetane la quantità de fende en bracca marcore da jurde angui Tunica, e le lettere iniziarie: la qualita

A Alga Fringat Postra SSubbia

Flat vs. filtered colimits

Giacomo Tendas Macquarie University

joint with Steve Lack

2 September 2021

CATEGORY THEORY $CT20 \rightarrow 21$

di fali sina al Mante di farta fina

Motivation: accessible categories

Some History:

- (1968) Ehresmann: Models of sketches •
- Gabriel and Ulmer: locally presentable categories
- $(20^{\circ}s)$ • Lair and Makkai/Paré: Accessible categories

Examples:

- Presheaf categories;
- Grothendieck topoi;
- Locally presentable categories;
- Categories of models of sketches;
 Categories of models of first order theories.

(1971)

Accessibility

Properties:

- Have a small dense generator:
- complete iff cocomplete;
- stable in CAT under flexible limits; (pseudo/bilunts)
- adjoint functor theorems.

The following are equivalent for a category A:

 $\rightarrow 0$ A is the free cocompletion of a small category under filtered colimits;

2 \mathcal{A} is equivalent to the category $\mathsf{Flat}(\mathcal{C}^{op}, \mathbf{Set})$ of flat presheaves on a small category \mathcal{C} .

 \sim If either of those holds we say that \mathcal{A} is finitely accessible.

• (1) is more convenient to work with:

• (2) is useful to develop the theory:

The following are equivalent for a category A:

() A is the free cocompletion of a small category under filtered colimits;

2 \mathcal{A} is equivalent to the category $Flat(\mathcal{C}^{op}, \mathbf{Set})$ of flat presheaves on a small category \mathcal{C} . If either of those holds we say that \mathcal{A} is **finitely accessible**.

• (1) is more convenient to work with: $\mathcal{A}(A, -)$ finitary \mathcal{A} is finitely accessible $\Leftrightarrow \exists C \subseteq \mathcal{A}_f$ small such that every object of \mathcal{A} is a filtered colimit of objects from \mathcal{C} .

• (2) is useful to develop the theory:

The following are equivalent for a category \mathcal{A} :

 \mathcal{A} is the free cocompletion of a small category under filtered colimits;

2 \mathcal{A} is equivalent to the category $\mathsf{Flat}(\mathcal{C}^{op}, \mathbf{Set})$ of flat presheaves on a small category \mathcal{C} .

If either of those holds we say that \mathcal{A} is finitely accessible.

• (1) is more convenient to work with:

 \mathcal{A} is finitely accessible $\Leftrightarrow \exists \mathcal{C} \subseteq \mathcal{A}_f$ small such that every object of \mathcal{A} is a filtered colimit of objects from C.

• (2) is useful to develop the theory:

 \mathcal{A} is accessible $\Leftrightarrow \mathcal{A}$ is the category of models of a sketch

 $\Leftrightarrow \mathcal{A}$ is the category of models of a first order theory.

Let $M : C^{op} \rightarrow \mathbf{Set}$ be a functor; the following are equivalent:

1) the category of elements EI(M) is filtered;

2 *M* is a filtered colimit of representable functors;

 \rightarrow 8 Lan_Y M: [C, Set] \rightarrow Set preserves finite limits.

If any of those holds we say that F is a **flat** functor.

Important later:

$$M \cong \operatorname{colim} \left(\operatorname{El}(M) \xrightarrow{\pi} \mathcal{C} \xrightarrow{Y} [\mathcal{C}^{op}, \operatorname{Set}] \right)$$

Enriched categories

Replace the sets of morphisms with objects of a symmetric monoidal closed category $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$.

• A \mathcal{V} -enriched category \mathcal{B} is given by:

1 a collection of objects X, Y, Z, \ldots ;

2 morphism objects $\mathcal{B}(X, Y) \in \mathcal{V}$, for each X, Y;

 ${f S}$ maps ${\cal B}(Y,Z)\otimes {\cal B}(X,Y) o {\cal B}(X,Z)$ in ${\cal V};$

4 identities $\operatorname{id}_X \colon I \to \mathcal{B}(X,X)$.

We can do ordinary category theory in this setting:
 F: C→ b, [e,B], Y: e→[e^{op},V]
 N: F→G

Examples of \mathcal{V} :

- \rightarrow (Cat, \times , 1);
 - (Pos, $\times, 1$);
- \rightarrow (SSet, \times , 1);

→ (**Ab**, ⊗, *I*);

- (GAb,⊗, /);
- **→** (DGAb, ⊗, /);
- \clubsuit ([0, ∞], +, 0).

In general we assume that our base $\mathcal V$ is locally finitely presentable as a closed category:

Definition

Let ${\mathcal A}$ be a ${\mathcal V}\text{-category};$ we say that:

 A is conically finitely accessible if it is the free cocompletion of a small V-category under filtered colimits;

A is finitely accessible if it is equivalent to the V-category Flat(C^{op}, V) of flat presheaves on a small V-category C.

- (1) good to work with P = Cat, SSet, Ab
- (2) good for the theory (~> Models of Sketches [BQ.R]

(1) ⇔ (2)?
 (No)
 Ls yas (> cocomplete

Definition

We say that $M: \mathcal{C}^{op} \to \mathcal{V}$ is flat if its left Kan extension $\operatorname{Lan}_{Y}M: [\mathcal{C}, \mathcal{V}] \to \mathcal{V}$ along the Yoneda embedding preserves finite weighted limits. funde convical + funde powers

- Aim: Characterize flat V-functors in terms of filtered colimits, when possible.
- **Strategy:** the ordinary functor $\mathcal{V}_0(I, -) \colon \mathcal{V}_0 \to \mathbf{Set}$ induces an adjunction:

We give conditions so that:

(1) if M is flat, then $\mathscr{U}M$ is flat;

(II) if M is flat, then $\epsilon_M \colon \mathscr{FU} M \to M$ is invertible.

Main results

When flat = filtered

Assume that the unit I of \mathcal{V} satisfies the following conditions: (a) $\mathcal{V}_0(I, -): \mathcal{V}_0 \to \mathbf{Set}$ is cocontinuous. (weakly) (b) $\mathcal{V}_0(I, -): \mathcal{V}_0 \to \mathbf{Set}$ is strong monoidal. (weakly)

(a) colim
$$\mathcal{V}_0(I, H-) \xrightarrow{\not{}} \mathcal{V}_0(I, \operatorname{colim} H)$$

(b)
$$\mathcal{V}_0(I,A) \times \mathcal{V}_0(I,B) \xrightarrow{\cong} \mathcal{V}_0(I,A \otimes B)$$

Examples of \mathcal{V} :

- (Set, ×, 1);• (2, ×, 1);• (Cat, ×, 1);• (Cat, ×, 1);• (SSet, ×, 1);• (Pos, ×, 1);• (Gpd, ×, 1);• (2-Cat, ⊠, 1);• (Met, ⊗, 1);• $(\mathcal{V}-Cat, ⊗, \mathcal{I}).$ · (Set * , A, I)

When flat = filtered

Assume that the unit I of \mathcal{V} satisfies the following conditions:

(a) V₀(I, −): V₀ → Set is cocontinuous.
(b) V₀(I, −): V₀ → Set is strong monoidal.

Proposition

Let $M : \mathcal{C}^{op} \to \mathcal{V}$ be a flat \mathcal{V} -functor. Then

$$M \cong \operatorname{colim}\left(\operatorname{El}(\mathscr{U}M)_{\mathcal{V}} \xrightarrow{\pi_{\mathcal{V}}} \mathcal{C} \xrightarrow{Y} [\mathcal{C}^{op}, \mathcal{V}]\right) \stackrel{e}{=} \texttt{FUM}$$

and $El(\mathcal{U}M)$ is a filtered category.

Theorem

A $\mathcal V\text{-}\mathsf{category}\ \mathcal A$ is finitely-accessible if and only if it is conically finitely accessible.

Examples of \mathcal{V} :

- (Set, \times , 1);
- (2, ×, 1);
- (Cat, \times , 1);
- (SSet, \times , 1);
- (Pos, \times , 1);
- (Gpd, \times , 1);
- $(2\text{-}Cat, \boxtimes, 1);$
- (Met, \otimes ,1);
 - $(\mathcal{V}\text{-}\mathsf{Cat},\otimes,\mathcal{I}).$

When flat = filtered + absolute (1)

We say that $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$ is **locally dualizable** if:

- (a) \mathcal{V}_0 has finite direct sums;
- (b) The unit *I* is regular projective and finitely presentable;
- (c) \mathcal{V}_0 has a strong generator \mathcal{G} made of dualizable objects;
- (d) for every arrow $z: I \to A \otimes B$ there exists a dualizable object $P \in \mathcal{V}$ and maps $x: P \to A$ and $y: P^* \to B$ such that

commutes.

Examples of \mathcal{V} :

Main results

- (CMon, \otimes , \mathbb{N}) with $\mathcal{G} = \{\mathbb{N}\};$
- $(\mathbf{Ab}, \otimes, \mathbb{Z})$ with $\mathcal{G} = \{\mathbb{Z}\};$
- $(R-Mod, \otimes, R)$ with $\mathcal{G} = \{R\}$;
- (GAb, ⊗, *I*) with *G* = {*S_nI*}_{n∈ℤ};
 (G-Gr(*R*-Mod), ⊗, *I*)
- (G-Gr(R-Mod), \otimes , I) with $\mathcal{G} = \{S_g R\}_{g \in G}$.

When flat = filtered + absolute (2)

Proposition

Let C be a V-category with finite direct sums and copowers by dualizable objects, and let $M: C^{op} \to V$ be a flat V-functor. Then

$$M \cong \operatorname{colim} \left(\operatorname{El}(\mathscr{U}M)_{\mathcal{V}} \xrightarrow{\pi_{\mathcal{V}}} \mathcal{C} \xrightarrow{Y} [\mathcal{C}^{op}, \mathcal{V}] \right)$$

and $El(\mathcal{U}M)$ is a filtered category.

When flat = filtered + absolute (2)

Proposition

Let C be a V-category with finite direct sums and copowers by dualizable objects, and let $M: C^{op} \to V$ be a flat V-functor. Then

$$M \cong \operatorname{colim} \left(\operatorname{El}(\mathscr{U}M)_{\mathcal{V}} \xrightarrow{\pi_{\mathcal{V}}} \mathcal{C} \xrightarrow{Y} [\mathcal{C}^{op}, \mathcal{V}] \right)$$

and $EI(\mathcal{U}M)$ is a filtered category.

Theorem

A \mathcal{V} -functor $M \colon \mathcal{C}^{op} \to \mathcal{V}$ is flat if and only if it is a filtered colimit of absolute colimits of representables.

Theorem

A $\mathcal V\text{-}\mathsf{category}$ has all absolute colimits if and only if it has

- finite direct sums;
- copowers by dualizable objects;
- splittings of idempotents.

Theorem

Let \mathcal{A} be a \mathcal{V} -category; TFAE:

- \mathcal{A} is finitely-accessible;
- A is conically finitely accessible and has all absolute colimits.

When flat = filtered + absolute (2)

Proposition

Let C be a V-category with finite direct sums and copowers by dualizable objects, and let $M: C^{op} \to V$ be a flat V-functor. Then

$$M \cong \operatorname{colim}\left(\operatorname{El}(\mathscr{U}M)_{\mathcal{V}} \xrightarrow{\pi_{\mathcal{V}}} \mathcal{C} \xrightarrow{Y} [\mathcal{C}^{op}, \mathcal{V}]\right)$$

and $EI(\mathcal{U}M)$ is a filtered category.

Theorem

A \mathcal{V} -functor $M \colon \mathcal{C}^{op} \to \mathcal{V}$ is flat if and only if it is a filtered colimit of absolute colimits of representables.

Theorem

A $\mathcal V\text{-}\mathsf{category}$ has all absolute colimits if and only if it has

- finite direct sums;
- copowers by dualizable objects;
- splittings of idempotents.

Theorem

Let \mathcal{A} be a \mathcal{V} -category; TFAE:

- \mathcal{A} is finitely-accessible;
- A is conically finitely accessible and has all absolute colimits.

Note: In general flat \neq filtered + absolute. Take for example $\mathcal{V} = \mathbf{Set}^{\mathcal{G}}$ for a finite non-trivial group \mathcal{G} .

Thank You