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Enriched universal algebra

Overview

Ordinary universal algebra:

L language (signature) containing n-ary
function symbols, where n ∈ N = Fin(Set).

L-structure: A ∈ Set t.w.

fA : An → A

for f ∈ L.

Then there are L-terms, equations, and
models (algebras) for such equations.

Enriched universal algebra

L language (signature) containing (X ,Y )-ary
function symbols, where X ∈ Fin(V).

L-structure: A ∈ V t.w.

fA : AX → AY

for f ∈ L.

Then we define L-terms, equations, and
models (algebras) for such equations.

Here V is a category endowed with additional structure on it.
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Enriched universal algebra

Motivation

Ordinarily, categories of models of equational
theories are well understood from the cate-
gorical point of view.

Theorem (Lawvere, Linton)

The following are equivalent for a given
category K:

1 K = Mod(T)
for an equational theory T on some L;

2 K = Alg(T )
for a finitary monad T : Set → Set;

3 K = FP(T ,Set)
for a Lawvere theory T .

For certain categories V, one can consider
V-enriched categories K:

• a set Ob(K) of objects;

• for any A,B ∈ Ob(K) an hom-object

K(A,B)

in V, together with. . .

• Many results from ordinary category theory
have enriched analogues.

(If you are not interested in enrichment: I want to do universal algebra internal to V.)
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Enriched universal algebra

Setting

Our base V is a symmetric monoidal closed category (etc.):

• There is a unit I ∈ V and, for any A,B
we have

A⊗ B ∈ V.
• These satisfy

A⊗ B ∼= B ⊗ A

and A⊗ I ∼= A.

• For any A,X ∈ V there is AX ∈ V s.t.

B → AX ⇔ B ⊗ X → A.

• There is a well defined notion of finite
object in V.

• (For today we assume the unit I to be
a generator.)
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Enriched universal algebra

Enriched languages

Definition

A single-sorted (functional) language L over V is the data of a set of function symbols
f : (X ,Y ) whose arities X and Y are finite objects of V.

• For V = Set, finite sets are finite
ordinals n = {0, 1, . . . , n – 1} ∈ N.

• (n, 1)-ary ⇐⇒ n-ary function
symbol.

•

To define an L-structure, we take
A ∈ Set together with

• fA : An → A if f ∈ L is n-ary

•
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Enriched universal algebra

Enriched languages

Definition

A single-sorted (functional) language L over V is the data of a set of function symbols
f : (X ,Y ) whose arities X and Y are finite objects of V.

Definition

Given a language L, an L-structure is the data of an object A ∈ V together with a morphism

fA : AX → AY

in V for any function symbol f : (X ,Y ) in L.

A morphism of L-structures h : A → B is the data
of a map h : A → B in V making the following
square commute for any f : (X ,Y ) in L.

AX AY

BX BY

fA

hX hY

fB
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Enriched universal algebra

Terms

Definition

The class of L-terms is defined recursively as
follows:

1 Every morphism g : Y → X of finite
objects is an (X ,Y )-ary term;

2 Every function symbol f : (X ,Y ) of L is
an (X ,Y )-ary term;

3 if ti is an (Xi ,Yi )-ary term for i ≤ n, and
s is an (

∑
i≤n Yi ,W )-ary term; then

s(t1, . . . , tn)

is a (
∑

i≤n Xj ,W )-ary term;

4 If t is a (X ,Y )-ary term and Z is finite,
then tZ is a (Z ⊗ X ,Z ⊗ Y )-ary term.

When V = Set, an (n,m)-ary term is a
m-tuple of n-ary terms.
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then tZ is a (Z ⊗ X ,Z ⊗ Y )-ary term.

When V = Set, an (n,m)-ary term is a
m-tuple of n-ary terms.

Given k : 1 → n, the n-ary term
corresponding to it is the k-th projection
πk(x1, . . . , xn).

Given A an L-structure, the
interpretation of g : (X ,Y ) is

gA := Ag : AX → AY

precomposition by g .
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Enriched universal algebra

Terms

Definition

The class of L-terms is defined recursively as
follows:

1 Every morphism g : Y → X of finite
objects is an (X ,Y )-ary term;

2 Every function symbol f : (X ,Y ) of L is
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4 If t is a (X ,Y )-ary term and Z is finite,
then tZ is a (Z ⊗ X ,Z ⊗ Y )-ary term.

When V = Set, an (n,m)-ary term is a
m-tuple of n-ary terms.

Needs no explanation:
function symbols are terms.

Given A an L-structure, the
interpretation of f : (X ,Y ) is

fA : AX → AY

(part of the structure on A).

6 of 10



Enriched universal algebra

Terms

Definition

The class of L-terms is defined recursively as
follows:

1 Every morphism g : Y → X of finite
objects is an (X ,Y )-ary term;
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When V = Set, an (n,m)-ary term is a
m-tuple of n-ary terms.

Defines superposition of terms: if Yi = 1
this is standard superposition. Otherwise
is (pointwise) superposition of tuples.

Given A an L-structure, the
interpretation of s(t1, . . . , tn) is

AΣiXi

∏
i (ti )A−−−−−−→ AΣiYi

sA−−−→ AW

where AΣiXi ∼=
∏

i A
Xi .
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Enriched universal algebra

Enriched equational theories

Definition

Given two L-terms s, t of arity (X ,Y ) we can form the equation

(s = t).

We say that an L-structure A satisfies (s = t) if sA = tA. A set E of equations is called an
equational theory. We denote by Mod(E) the (enriched) category of models of E.

Theorem

The following are equivalent for an enriched category K:

1 K ≃ Mod(E) for some equational theory E;
2 K ≃ Alg(T ) for a finitary monad T on V;
3 K ≃ FP(T ,V) is the category of models of an enriched Lawvere theory.
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Enriched universal algebra

Examples: K-Vect and Ab

V = K-Vect

Fin(K-Vect) = {Kn}n≥0 and

VKn ∼= V n

for any K-vector space V .
A language L over K-Vect is just an
ordinary language. An L-structure is given
by V ∈ K-Vect t.w.

fV : V n → V

for any f ∈ L.
Terms are build as ordinary terms plus:

• if s, t are terms, then s + t is a term;

• if t is a term and k ∈ K, then k · t is a
term.

V = Ab

Fin(Ab) = direct sums of Z and Z/mZ; and

GZ/mZ ∼= Gm := {x ∈ G |mx = 0}

for any abelian group G .
A language L has function sym. with arity

(Zn ⊕ Z/m1Z⊕ · · · ⊕ Z/mkZ, Z/mZ),

an L-structure is given by G ∈ Ab t.w.

fG : Gn ⊕ Gm1 ⊕ · · · ⊕ Gmk → Gm

for any f ∈ L.
Terms are build as ordinary terms plus:

• if s, t are terms, then s + t is a term
and –t is a term.
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Enriched universal algebra

Examples: Pos and Met

V = Pos

Fin(Pos) = {X = (S ,≤) |S is finite} and

PX ∼= Pos(X ,P)

for any poset P.
Consider 2 := {0 ≤ 1}, so that

P2 = {(x , y) ∈ P × P |x ≤ y}.

It is enough to work with (X ,2)-ary terms (believe me).
Suppose X = n is discrete. Any (n,2)-ary term t, with interpretation tP : Pn → P2, induces
two classical n-ary terms t1, t2 such that

t1P(a1, . . . an) ≤ t2P(a1, . . . , an).

Thus, equational theories over Pos include inequalities. See [Adámek, Ford, Milius, Schröder].
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Enriched universal algebra

Examples: Pos and Met

V = Met

Metric spaces with non-expanding maps, consider a countable metric space X

MX ∼= Met(X ,M)

for any metric space M.
Consider 2ε := {0, 1} with d(0, 1) = ε, for ε > 0, so that

M2ε = {(x , y) ∈ P × P |d(x , y) ≤ ε}.

It is enough to work with (X ,2ε)-ary terms (believe me).
Suppose X = n is discrete. Any (n,2ε)-ary term t, with interpretation tM : Mn → M2ε ,
induces two classical n-ary terms t1, t2 such that

d(t1M(a1, . . . an), t
2
M(a1, . . . , an)) ≤ ε.

Thus, equational theories over Met include equalities up to ε. See [Adámek, Dostál, Velebil].
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Enriched universal algebra

Thank You
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