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Ordinary universal algebra:

L language (signature) containing n-ary
function symbols, where n € N = Fin(Set).

L-structure: A € Set t.w.
fA: AT — A
for f € L.

Then there are LL-terms, equations, and
models (algebras) for such equations.
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Ordinary universal algebra: Enriched universal algebra
L language (signature) containing n-ary L language (signature) containing (X, Y)-ary
function symbols, where n € N = Fin(Set). function symbols, where X € Fin(V).
L-structure: A € Set t.w. L-structure: A€V t.w.

fa: AT — A fa: AX — AY
for f € L. for f € L.
Then there are LL-terms, equations, and Then we define L-terms, equations, and
models (algebras) for such equations. models (algebras) for such equations.

v v

Here V is a category endowed with additional structure on it.
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Ordinarily, categories of models of equational
theories are well understood from the cate-
gorical point of view.

Theorem (Lawvere, Linton)
The following are equivalent for a given
category K:
® K = Mod(T)
for an equational theory T on some LL;
@ K =Alg(T)
for a finitary monad T : Set — Set;
® K = FP(T,Set)
for a Lawvere theory T .
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Ordinarily, categories of models of equational
theories are well understood from the cate-
gorical point of view.

For certain categories V), one can consider
V-enriched categories K:

® a set Ob(K) of objects;

Theorem (Lawvere, Linton) e for any A, B € Ob(K) an hom-object
The following are equivalent for a given
category K: K(A, B)
® K = Mod(T) . .
, togeth th. ..
for an equational theory T on some LL; in V', together wi y
@ C=Alg(T) e Many results from ordinary category theory

for a finitary monad T : Set — Set;

® K = FP(T, Set)
for a Lawvere theory T .

have enriched analogues.
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Ordinarily, categories of models of equational
theories are well understood from the cate-
gorical point of view.

For certain categories V, one can consider
V-enriched categories K:

® a set Ob(K) of objects;

Theorem (Power) e for any A, B € Ob(K) an hom-object
The following are equivalent for a given
V-enriched category K: K(A, B)
0 =177 in V, together with. . . |
e K= A.Ig.( T) e Many results from ordinary category theory
for a finitary monad T:V — V; have enriched analogues.
© K =FP(T.V) e Points (2) and (3) already had enriched

for an enriched Lawvere theory T ) analogues, while (1) was not extended.

e —————————




Ordinarily, categories of models of equational
theories are well understood from the cate-
gorical point of view.

For certain categories V, one can consider
V-enriched categories K:

® a set Ob(K) of objects;

Theorem (Power) e for any A, B € Ob(K) an hom-object
The following are equivalent for a given
V-enriched category K: K(A, B)

@ KC=777

in V, together with. .. )

S A.Ig.( 7) e Many results from ordinary category theory
for a finitary monad T:V — V; have enriched analogues.

e K= FP(T, V) e Points (2) and (3) already had enriched
for an enriched Lawvere theory T . ) analogues, while (1) was not extended.

(If you are not interested in enrichment: | want to do universal algebra internal to V.)
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Our base V is a symmetric monoidal closed category (etc.):

® There is a unit / € V and, for any A, B
we have

AR BeV.
® These satisfy
ARB=B®A
and AR | =2 A
® Forany A X €V thereis AX € V sit.
B—+AX & BaX—A
® There is a well defined notion of finite
object in V.
® (For today we assume the unit / to be
a generator.)

e —————



Our base V is a symmetric monoidal closed category (etc.):

® There is a unit / € ¥V and, for any A, B o V= (Set, x, 1)

we have
AR BeV.
® These satisfy V= (Ab,®,7Z)
ARB=B®A
and A | 2 A.
e Forany A X €V there is AX € V sit. * V = (K-Vect, @, K)

B AX & BoX = A

® There is a well defined notion of finite
object in V. * VY = (Pos, x,1)
® (For today we assume the unit / to be

a generator.)

e —————




Our base V is a symmetric monoidal closed category (etc.):

® There is a unit / € V and, for any A, B o V= (Set, x, 1)

we have
A®BEV. AX = Set(X, A);
® These satisfy e V=(Ab,®, 2)
AeB=BeA AX = Ab(X, A

and A | 2 A. = Ab(X. A);

® Forany A X €V thereis AX € V sit. * V = (K-Vect, ®, K)
B—+AX & BaX—A AX = K-Vect(X, A);

® There is a well defined notion of finite

object in V. ® VY = (Pos, x,1)
e (For today we assume the unit / to be AX = Pos(X, A).

<

a generator.)

e —————



Our base V is a symmetric monoidal closed category (etc.):

® There is a unit / € V and, for any A, B o V= (Set, x, 1)

we have
AR B e V. Finite;
® These satisfy e V= (Ab,®,7)
ARB~B®A .
and A® |2 A Finitely presented;
® Forany A, X €V thereis AX € V sit. * V = (K-Vect, ®k, K)
B—AS & BoX A Finite dimensional;
® There is a well defined notion of finite
object in V. * V= (Pos, x,1)
® (For today we assume the unit / to be Finite. )

a generator.)

e —————



Enriched languages

Definition
A single-sorted (functional) language IL over V is the data of a set of function symbols
f: (X, Y) whose arities X and Y are finite objects of V.

® For V = Set, finite sets are finite To define an L-structure, we take
ordinals n={0,1,...,n-1} € N. A € Set together with

® (n,1)-ary <= n-ary function ® fo: A" 5 Aif f €L is n-ary
symbol.

[ ] [ ]
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Enriched languages

Definition
A single-sorted (functional) language IL over V is the data of a set of function symbols
f: (X, Y) whose arities X and Y are finite objects of V.

® For V = Set, finite sets are finite To define an L-structure, we take
ordinals n={0,1,...,n—-1} € N, A € Set together with

® (n,1)-ary <= n-ary function ® fi: A" — Aif f € Lis n-ary
symbol.

® (n,m)-ary <= m-tuple (f;)j<m of ® fa: A" = AT if f = (fi)icm €Lis
n-ary function symbols. (n, m)-ary.

e ——————



Enriched languages

Definition
A single-sorted (functional) language IL over V is the data of a set of function symbols
f:(X,Y) whose arities X and Y are finite objects of V.

Definition
Given a language IL, an L-structure is the data of an object A € V together with a morphism

fa: AX 5 AY

in V for any function symbol f: (X, Y) in L. AX fa AY

A morphism of L-structures h: A — B is the data
of a map h: A — B in V making the following s h”
square commute for any f: (X, Y) in L. gX gY

fs

e ——————




Definition
The class of L-terms is defined recursively as
follows:

@ Every morphism g: Y — X of finite
objects is an (X, Y)-ary term;

@® Every function symbol f: (X, Y) of L is
an (X, Y)-ary term;

@ if t; is an (X;, Y;)-ary term for i < n, and
sisan (3 <, Y;, W)-ary term; then

S(tl,...,tn)

isa (D2j<pXj W)-ary term;
@ If tisa (X, Y)-ary term and Z is finite,
then t isa (Z® X, Z ® Y)-ary term.

When V = Set, an (n, m)-ary term is a
m-tuple of n-ary terms.




Definition
The class of L-terms is defined recursively as
follows:
@ Every morphism g: Y — X of finite
objects is an (X, Y)-ary term;
@® Every function symbol f: (X, Y) of L is
an (X, Y)-ary term;
@ if t; is an (X;, Y;)-ary term for i < n, and
sisan (>« Yi, W)-ary term; then

S(tl,...,tn)

isa (D2j<pXj W)-ary term;
@ If tisa (X, Y)-ary term and Z is finite,
then t isa (Z® X, Z ® Y)-ary term.

When V = Set, an (n, m)-ary term is a
m-tuple of n-ary terms.

Given k: 1 — n, the n-ary term
corresponding to it is the k-th projection

(X1, .-\ Xn).

Given A an L-structure, the
interpretation of g : (X, Y) is

gA::Ag:AX—>AY

precomposition by g.




Definition
The class of L-terms is defined recursively as
follows:

@ Every morphism g: Y — X of finite
objects is an (X, Y)-ary term;

@® Every function symbol : (X, Y) of L is
an (X, Y)-ary term;

@ if t; is an (X;, Y;)-ary term for i < n, and
sisan (3 <, Y;, W)-ary term; then

S(tl,...,tn)

isa (D2j<pXj W)-ary term;
@ If tisa (X, Y)-ary term and Z is finite,
then t isa (Z® X, Z ® Y)-ary term.

When V = Set, an (n, m)-ary term is a
m-tuple of n-ary terms.

Needs no explanation:
function symbols are terms.

Given A an L-structure, the
interpretation of f : (X, Y) is

fa: AX 5 AY

(part of the structure on A).




Bielinikion When V = Set, an (n, m)-ary term is a
The class of L-terms is defined recursively as m-tuple of n-ary terms.
follows:
@ Every morphism g: Y — X of finite Defines superposition of terms: if Y; =1
objects is an (X, Y)-ary term; this is standard superposition. Otherwise
@ Every function symbol  : (X, Y) of L is is (pointwise) superposition of tuples. )
n (X, Y)-ary term;
® if t; is an (X, Y;j)-ary term for i < n, and Given A an L-structure, the
sisan (X<, Yj, W)-ary term; then interpretation of s(t1, ..., t,) is
S(tl,...,tn) AEX [Ti(t)a AEY, AW
isa (D2j<pXj W)-ary term; where AZiXi = TT. AXi.

@ If tisa (X, Y)-ary term and Z is finite,
then t isa (Z® X, Z ® Y)-ary term.




Definition
The class of L-terms is defined recursively as
follows:

@ Every morphism g: Y — X of finite
objects is an (X, Y)-ary term;

@® Every function symbol f: (X, Y) of L is
an (X, Y)-ary term;

@ if t; is an (X;, Y;)-ary term for i < n, and
sisan (3 <, Y;, W)-ary term; then

S(tl,...,tn)

isa (D2j<pXj W)-ary term;
@ If tisa (X, Y)-ary term and Z is finite,
then t isa (Z® X, Z ® Y)-ary term.

When V = Set, an (n, m)-ary term is a
m-tuple of n-ary terms.

Given an n-ary term t defines an
(nm, m)-ary term t™ which corresponds
to the tuple (¢, ..., t).

Given A an L-structure, the
interpretation of t< is

AZ®X (ta)* AZ®Y

where AZ®X = (AX)Z.




Definition When V = Set, an (n, m)-ary term is a
The class of L-terms is defined recursively as m-tuple of n-ary terms.
follows:
@ Every morphism g: Y — X of finite Given an n-ary term t defines an
objects is an (X, Y)-ary term; (nm, m)-ary term t™ which corresponds
@® Every function symbol f: (X, Y) of L is 59 itz AR (GooonoB)e )
an (X, Y)-ary term;
@ if t; is an (X;, Y;)-ary term for i < n, and .Given A an ]L—stru;tl.Jre, the
sisan (X<, Yi, W)-ary term; then interpretation of t< is
s(t1, ... tn) AZex (W 7oy
is a (X<, X, W)-ary term. where AZ®X = (AX)Z.
0 H-tisa (XY )-ary-term-and-Zisfinite; .
thertZis-a{Z-@XZ&Y)-ary-term.
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Enriched equational theories

Definition
Given two L-terms s, t of arity (X, Y) we can form the equation

We say that an L-structure A satisfies (s = t) if s4 = ta. A set E of equations is called an
equational theory. We denote by Mod(E) the (enriched) category of models of E.




Enriched equational theories

Definition

Given two L-terms s, t of arity (X, Y) we can form the equation

We say that an L-structure A satisfies (s = t) if s4 = ta. A set E of equations is called an
equational theory. We denote by Mod(E) the (enriched) category of models of E.

Theorem
The following are equivalent for an enriched category K:
® K ~ Mod(E) for some equational theory E;
® K ~ Alg(T) for a finitary monad T onV;
® K ~FP(T,V) is the category of models of an enriched Lawvere theory.
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Examples: K-Vect and Ab

V = K-Vect
Fin(K-Vect) = {K"} >0 and

V]K" o~ \/n

for any K-vector space V.

A language IL over K-Vect is just an
ordinary language. An IL-structure is given
by V € K-Vect t.w.

f\/i vh s Vv
for any f € L.
Terms are build as ordinary terms plus:

® if s, t are terms, then s + t is a term;

e if tisatermand k €K, then k-tisa
term. )




Examples: K-Vect and Ab

Y = K-Vect Y = Ab

Fin(K-Vect) = {K"} >0 and Fin(Ab) = direct sums of Z and Z/mZ; and
VK" =~ yn GZ/ML ~ G, .= {x € G|mx = 0}

for any K-vector space V. for any abelian group G.

A language IL over K-Vect is just an A language L has function sym. with arity

ordinary language. An IL-structure is given

n DR
by V € K-Vect t.w. (O @Y G @) === i, T iV

an L-structure is given by G € Ab t.w.

f\/i vh s Vv
forany f € L. fg: 6" & Cmy & -~ ® Gm, = Cm
Terms are build as ordinary terms plus: for any f € LL.
e if s, t are terms, then s+ t is a term: Terms are build as ordinary terms plus:
e if tisatermand k €K, then k-tisa ® if s, t are terms, then s+t is a term
term. and —t is a term. )

y




Examples: Pos and Met

V = Pos
Fin(Pos) = {X = (S, <) |S is finite} and

PX = Pos(X, P)

for any poset P.
Consider 2 := {0 < 1}, so that

P? ={(x,y) € P x P |x <y}

It is enough to work with (X, 2)-ary terms (believe me).
Suppose X = n is discrete. Any (n, 2)-ary term t, with interpretation tp: P" — P2, induces
two classical n-ary terms t!, 2 such that

t,lp(al, co.ap) < t,%(al, ey an).

Thus, equational theories over Pos include inequalities. See [Adamek, Ford, Milius, Schroder].
Yy
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Examples: Pos and Met

Y = Met
Metric spaces with non-expanding maps, consider a countable metric space X

MX = Met(X, M)

for any metric space M.
Consider 2¢ := {0, 1} with d(0,1) =€, for € > 0, so that

M2 = {(x,y) € P x P |d(x,y) <}.
It is enough to work with (X, 2¢)-ary terms (believe me).

Suppose X = n is discrete. Any (n, 2¢)-ary term t, with interpretation ty;: M" — M?e,
induces two classical n-ary terms tl, t2 such that

d(t,b,(al, ...an), t,2\/,(al, ...,an)) <e.

Thus, equational theories over Met include equalities up to €. See [Addmek, Dostél, Velebil].
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Thank You




	

