

The University of Manchester

# Enriched universal algebra

# **Giacomo Tendas**

j.w.w. J. Rosický

18 June 2024



## Ordinary universal algebra:

 $\mathbb{L}$  language (signature) containing *n*-ary function symbols, where  $n \in \mathbb{N} = Fin(\mathbf{Set})$ .

 $\mathbb{L}$ -structure:  $A \in \mathbf{Set}$  t.w.

$$f_A \colon A^n \to A$$

for  $f \in \mathbb{L}$ .

Then there are  $\mathbb{L}\text{-}\mathsf{terms},$  equations, and models (algebras) for such equations.

#### Ordinary universal algebra:

 $\mathbb{L}$  language (signature) containing *n*-ary function symbols, where  $n \in \mathbb{N} = Fin(\mathbf{Set})$ .

 $\mathbb{L}$ -structure:  $A \in \mathbf{Set}$  t.w.

$$f_A \colon A^n \to A$$

for  $f \in \mathbb{L}$ .

Then there are  $\mathbb{L}$ -terms, equations, and models (algebras) for such equations.

#### Enriched universal algebra

 $\mathbb{L}$  language (signature) containing (X, Y)-ary function symbols, where  $X \in Fin(\mathcal{V})$ .

 $\mathbb{L}$ -structure:  $A \in \mathcal{V}$  t.w.

$$f_A \colon A^X \to A^Y$$

for  $f \in \mathbb{L}$ .

Then we define  $\mathbb{L}$ -terms, equations, and models (algebras) for such equations.

Here  $\ensuremath{\mathcal{V}}$  is a category endowed with additional structure on it.

Ordinarily, categories of models of equational theories are well understood from the categorical point of view.

#### Theorem (Lawvere, Linton)

The following are equivalent for a given category  $\mathcal{K}:$ 

- \$\mathcal{K}\$ = Mod(\$\mathbb{T}\$) for an equational theory \$\mathbb{T}\$ on some \$\mathbb{L}\$;
- $\mathcal{K} = \operatorname{Alg}(T)$  for a finitary monad  $T : \operatorname{Set} \to \operatorname{Set};$
- **3**  $\mathcal{K} = FP(\mathcal{T}, \mathbf{Set})$ for a Lawvere theory  $\mathcal{T}$ .

Ordinarily, categories of models of equational theories are well understood from the categorical point of view.

## Theorem (Lawvere, Linton)

The following are equivalent for a given category  $\mathcal{K}:$ 

- 𝔅 = Mod(𝔅) for an equational theory 𝔅 on some 𝔅;
- $\mathcal{K} = \operatorname{Alg}(T)$ for a finitary monad  $T : \operatorname{Set} \to \operatorname{Set};$
- $\mathcal{K} = FP(\mathcal{T}, \mathbf{Set})$ for a Lawvere theory  $\mathcal{T}$ .

For certain categories  $\mathcal{V}$ , one can consider  $\mathcal{V}$ -enriched categories  $\mathcal{K}$ :

- a set Ob( $\mathcal{K}$ ) of objects;
- for any  $A, B \in \mathsf{Ob}(\mathcal{K})$  an hom-object

 $\mathcal{K}(A, B)$ 

in  $\mathcal V,$  together with. . .

• Many results from ordinary category theory have enriched analogues.

Ordinarily, categories of models of equational theories are well understood from the categorical point of view.

#### Theorem (Power)

The following are equivalent for a given  $\mathcal{V}$ -enriched category  $\mathcal{K}$ :

**1** *K* =???

 $\mathcal{K} = \operatorname{Alg}(T)$  for a finitary monad  $T: \mathcal{V} \to \mathcal{V};$ 

 𝔅 𝔅 = 𝑘𝔅(𝔅, 𝔅) for an enriched Lawvere theory 𝔅. For certain categories  $\mathcal{V}$ , one can consider  $\mathcal{V}$ -enriched categories  $\mathcal{K}$ :

- a set Ob( $\mathcal{K}$ ) of objects;
- for any  $A, B \in \mathsf{Ob}(\mathcal{K})$  an hom-object

 $\mathcal{K}(A, B)$ 

in  $\mathcal{V}$ , together with...

- Many results from ordinary category theory have enriched analogues.
- Points (2) and (3) already had enriched analogues, while (1) was not extended.

Ordinarily, categories of models of equational theories are well understood from the categorical point of view.

#### **Theorem (Power)**

The following are equivalent for a given  $\mathcal{V}$ -enriched category  $\mathcal{K}$ :

● *K* =???

 $\mathcal{K} = \operatorname{Alg}(T)$  for a finitary monad  $T: \mathcal{V} \to \mathcal{V};$ 

 𝔅 𝔅 = 𝑘𝔅(𝔅, 𝔅) for an enriched Lawvere theory 𝔅. For certain categories  $\mathcal{V}$ , one can consider  $\mathcal{V}$ -enriched categories  $\mathcal{K}$ :

- a set Ob( $\mathcal{K}$ ) of objects;
- for any  $A, B \in \mathsf{Ob}(\mathcal{K})$  an hom-object

 $\mathcal{K}(A, B)$ 

in  $\mathcal{V}$ , together with...

- Many results from ordinary category theory have enriched analogues.
- Points (2) and (3) already had enriched analogues, while (1) was not extended.

(If you are not interested in enrichment: I want to do universal algebra internal to  $\mathcal{V}$ .)

Our base  $\mathcal{V}$  is a symmetric monoidal closed category (etc.):

There is a unit *I* ∈ V and, for any *A*, *B* we have

 $A \otimes B \in \mathcal{V}$ .

• These satisfy

 $A \otimes B \cong B \otimes A$ 

and  $A \otimes I \cong A$ .

- For any  $A, X \in \mathcal{V}$  there is  $A^X \in \mathcal{V}$  s.t.  $B \to A^X \Leftrightarrow B \otimes X \to A.$
- There is a well defined notion of finite object in  $\mathcal{V}$ .
- (For today we assume the unit *I* to be a generator.)

Our base  $\mathcal{V}$  is a symmetric monoidal closed category (etc.):

There is a unit *I* ∈ V and, for any *A*, *B* we have

 $A \otimes B \in \mathcal{V}$ .

• These satisfy

 $A \otimes B \cong B \otimes A$ 

and  $A \otimes I \cong A$ .

- For any  $A, X \in \mathcal{V}$  there is  $A^X \in \mathcal{V}$  s.t.  $B \to A^X \Leftrightarrow B \otimes X \to A$ .
- There is a well defined notion of finite object in  $\mathcal{V}$ .
- (For today we assume the unit *I* to be a generator.)

• 
$$\mathcal{V} = (\mathbf{Set}, \times, 1)$$

• 
$$\mathcal{V} = (\mathsf{Ab}, \otimes, \mathbb{Z})$$

•  $\mathcal{V} = (\mathbb{K}\text{-}\mathsf{Vect}, \otimes_{\mathbb{K}}, \mathbb{K})$ 

• 
$$\mathcal{V} = (\mathsf{Pos}, \times, 1)$$

Our base  $\mathcal{V}$  is a symmetric monoidal closed category (etc.):

• There is a unit  $I \in \mathcal{V}$  and, for any A, B we have

 $A \otimes B \in \mathcal{V}$ .

• These satisfy

 $A \otimes B \cong B \otimes A$ 

and  $A \otimes I \cong A$ .

- For any  $A, X \in \mathcal{V}$  there is  $A^X \in \mathcal{V}$  s.t.  $B \to A^X \Leftrightarrow B \otimes X \to A$ .
- There is a well defined notion of finite object in  $\mathcal{V}$ .
- (For today we assume the unit *I* to be a generator.)

•  $\mathcal{V} = (\mathbf{Set}, \times, 1)$  $A^X = \mathbf{Set}(X, A);$ •  $\mathcal{V} = (\mathbf{Ab}, \otimes, \mathbb{Z})$  $A^X = \mathbf{Ab}(X, A);$ •  $\mathcal{V} = (\mathbb{K} - \mathbf{Vect}, \otimes_{\mathbb{K}}, \mathbb{K})$  $A^X = \mathbb{K}$ -**Vect**(X, A); •  $\mathcal{V} = (\mathbf{Pos}, \times, 1)$  $A^X = \mathbf{Pos}(X, A).$ 

Our base  $\mathcal{V}$  is a symmetric monoidal closed category (etc.):

• There is a unit  $I \in \mathcal{V}$  and, for any A, B we have

 $A \otimes B \in \mathcal{V}$ .

• These satisfy

 $A \otimes B \cong B \otimes A$ 

and  $A \otimes I \cong A$ .

- For any  $A, X \in \mathcal{V}$  there is  $A^X \in \mathcal{V}$  s.t.  $B \to A^X \Leftrightarrow B \otimes X \to A.$
- There is a well defined notion of finite object in  $\mathcal{V}$ .
- (For today we assume the unit *I* to be a generator.)

•  $\mathcal{V} = (\mathbf{Set}, \times, 1)$ Finite: •  $\mathcal{V} = (\mathbf{Ab}, \otimes, \mathbb{Z})$ Finitely presented: •  $\mathcal{V} = (\mathbb{K} - \mathbf{Vect}, \otimes_{\mathbb{K}}, \mathbb{K})$ Finite dimensional; •  $\mathcal{V} = (\mathbf{Pos}, \times, 1)$ Finite.

# **Enriched** languages

#### Definition

A single-sorted (functional) language  $\mathbb{L}$  over  $\mathcal{V}$  is the data of a set of function symbols f: (X, Y) whose arities X and Y are finite objects of  $\mathcal{V}$ .

- For V = Set, finite sets are finite ordinals n = {0, 1, ..., n-1} ∈ N.
- (n, 1)-ary ⇐⇒ n-ary function symbol.

To define an  $\mathbb{L}\text{-structure},$  we take  $A\in \textbf{Set}$  together with

•  $f_A \colon A^n \to A$  if  $f \in \mathbb{L}$  is *n*-ary

# **Enriched** languages

#### Definition

A single-sorted (functional) language  $\mathbb{L}$  over  $\mathcal{V}$  is the data of a set of function symbols f: (X, Y) whose arities X and Y are finite objects of  $\mathcal{V}$ .

- For V = Set, finite sets are finite ordinals n = {0, 1, ..., n-1} ∈ N.
- (n, 1)-ary ⇐⇒ n-ary function symbol.
- (n, m)-ary ⇔ m-tuple (f<sub>i</sub>)<sub>i≤m</sub> of n-ary function symbols.

To define an  $\mathbb{L}$ -structure, we take  $A \in \mathbf{Set}$  together with

- $f_A \colon A^n \to A$  if  $f \in \mathbb{L}$  is *n*-ary
- $f_A: A^n \to A^m$  if  $f = (f_i)_{i \le m} \in \mathbb{L}$  is (n, m)-ary.

# **Enriched** languages

#### Definition

A single-sorted (functional) language  $\mathbb{L}$  over  $\mathcal{V}$  is the data of a set of function symbols f: (X, Y) whose arities X and Y are finite objects of  $\mathcal{V}$ .

#### Definition

Given a language  $\mathbb{L}$ , an  $\mathbb{L}$ -structure is the data of an object  $A \in \mathcal{V}$  together with a morphism

$$f_A \colon A^X \to A^Y$$

in  $\mathcal{V}$  for any function symbol f: (X, Y) in  $\mathbb{L}$ .

A morphism of L-structures  $h: A \to B$  is the data of a map  $h: A \to B$  in  $\mathcal{V}$  making the following square commute for any f: (X, Y) in L.



#### Definition

The class of  $\mathbb{L}$ -terms is defined recursively as follows:

- Every morphism g: Y → X of finite objects is an (X, Y)-ary term;
- e Every function symbol f : (X, Y) of L is an (X, Y)-ary term;
- **3** if  $t_i$  is an  $(X_i, Y_i)$ -ary term for  $i \le n$ , and s is an  $(\sum_{i \le n} Y_i, W)$ -ary term; then

# $s(t_1,\ldots,t_n)$

is a  $(\sum_{i < n} X_j, W)$ -ary term;

If t is a (X, Y)-ary term and Z is finite, then  $t^Z$  is a  $(Z \otimes X, Z \otimes Y)$ -ary term. When  $\mathcal{V} = \mathbf{Set}$ , an (n, m)-ary term is a *m*-tuple of *n*-ary terms.

## Definition

The class of  $\mathbb{L}\text{-terms}$  is defined recursively as follows:

- Every morphism g: Y → X of finite objects is an (X, Y)-ary term;
- e Every function symbol f : (X, Y) of L is an (X, Y)-ary term;
- **3** if  $t_i$  is an  $(X_i, Y_i)$ -ary term for  $i \le n$ , and s is an  $(\sum_{i \le n} Y_i, W)$ -ary term; then

 $s(t_1,\ldots,t_n)$ 

is a  $(\sum_{i < n} X_j, W)$ -ary term;

**4** If t is a (X, Y)-ary term and Z is finite, then  $t^Z$  is a  $(Z \otimes X, Z \otimes Y)$ -ary term.

When  $\mathcal{V} = \mathbf{Set}$ , an (n, m)-ary term is a *m*-tuple of *n*-ary terms.

Given  $k: 1 \rightarrow n$ , the *n*-ary term corresponding to it is the *k*-th projection  $\pi_k(x_1, \ldots, x_n)$ .

Given A an  $\mathbb{L}$ -structure, the interpretation of g : (X, Y) is

$$g_A := A^g : A^X \to A^Y$$

precomposition by g.

### Definition

The class of  $\mathbb{L}\text{-terms}$  is defined recursively as follows:

- Every morphism g: Y → X of finite objects is an (X, Y)-ary term;
- e Every function symbol f : (X, Y) of L is an (X, Y)-ary term;
- **3** if  $t_i$  is an  $(X_i, Y_i)$ -ary term for  $i \le n$ , and s is an  $(\sum_{i \le n} Y_i, W)$ -ary term; then

 $s(t_1,\ldots,t_n)$ 

is a  $(\sum_{i < n} X_j, W)$ -ary term;

**4** If t is a (X, Y)-ary term and Z is finite, then  $t^Z$  is a  $(Z \otimes X, Z \otimes Y)$ -ary term.

When  $\mathcal{V} = \mathbf{Set}$ , an (n, m)-ary term is a *m*-tuple of *n*-ary terms.

Needs no explanation: function symbols are terms.

Given A an  $\mathbb{L}$ -structure, the interpretation of f : (X, Y) is

$$f_A\colon A^X\to A^Y$$

(part of the structure on A).

#### Definition

The class of  $\mathbb{L}\text{-terms}$  is defined recursively as follows:

- Every morphism g: Y → X of finite objects is an (X, Y)-ary term;
- e Every function symbol f : (X, Y) of L is an (X, Y)-ary term;
- **3** if  $t_i$  is an  $(X_i, Y_i)$ -ary term for  $i \le n$ , and s is an  $(\sum_{i \le n} Y_i, W)$ -ary term; then

# $s(t_1,\ldots,t_n)$

is a  $(\sum_{i \le n} X_j, W)$ -ary term; a If t is a (X, Y)-ary term and Z is finite, then  $t^Z$  is a  $(Z \otimes X, Z \otimes Y)$ -ary term. When  $\mathcal{V} = \mathbf{Set}$ , an (n, m)-ary term is a *m*-tuple of *n*-ary terms.

Defines superposition of terms: if  $Y_i = 1$  this is standard superposition. Otherwise is (pointwise) superposition of tuples.

Given A an  $\mathbb{L}$ -structure, the interpretation of  $s(t_1, \ldots, t_n)$  is

 $\mathcal{A}^{\Sigma_i X_i} \xrightarrow{\prod_i (t_i)_{\mathcal{A}}} \mathcal{A}^{\Sigma_i Y_i} \xrightarrow{s_{\mathcal{A}}} \mathcal{A}^{W}$ 

where  $A^{\Sigma_i X_i} \cong \prod_i A^{X_i}$ .

## Definition

The class of  $\mathbb{L}\text{-terms}$  is defined recursively as follows:

- Every morphism g: Y → X of finite objects is an (X, Y)-ary term;
- e Every function symbol f : (X, Y) of L is an (X, Y)-ary term;
- **3** if  $t_i$  is an  $(X_i, Y_i)$ -ary term for  $i \le n$ , and s is an  $(\sum_{i \le n} Y_i, W)$ -ary term; then

 $s(t_1,\ldots,t_n)$ 

is a  $(\sum_{i \le n} X_j, W)$ -ary term; **(a)** If t is a (X, Y)-ary term and Z is finite, then  $t^Z$  is a  $(Z \otimes X, Z \otimes Y)$ -ary term. When  $\mathcal{V} = \mathbf{Set}$ , an (n, m)-ary term is a *m*-tuple of *n*-ary terms.

Given an *n*-ary term *t* defines an (nm, m)-ary term  $t^m$  which corresponds to the tuple  $(t, \ldots, t)$ .

Given A an  $\mathbb{L}$ -structure, the interpretation of  $t^Z$  is

$$A^{Z\otimes X} \xrightarrow{(t_A)^Z} A^{Z\otimes Y}$$

where  $A^{Z\otimes X} \cong (A^X)^Z$ .

## Definition

The class of  $\mathbb{L}\text{-terms}$  is defined recursively as follows:

- Every morphism g: Y → X of finite objects is an (X, Y)-ary term;
- e Every function symbol f : (X, Y) of L is an (X, Y)-ary term;
- **3** if  $t_i$  is an  $(X_i, Y_i)$ -ary term for  $i \le n$ , and s is an  $(\sum_{i \le n} Y_i, W)$ -ary term; then

 $s(t_1,\ldots,t_n)$ 

is a  $(\sum_{i \le n} X_j, W)$ -ary term. **3** If *t* is a (X, Y)-ary term and *Z* is finite, then  $t^Z$  is a  $(Z \otimes X, Z \otimes Y)$ -ary term. When  $\mathcal{V} = \mathbf{Set}$ , an (n, m)-ary term is a *m*-tuple of *n*-ary terms.

Given an *n*-ary term *t* defines an (nm, m)-ary term  $t^m$  which corresponds to the tuple  $(t, \ldots, t)$ .

Given A an  $\mathbb{L}$ -structure, the interpretation of  $t^Z$  is

$$A^{Z\otimes X} \xrightarrow{(t_A)^Z} A^{Z\otimes Y}$$

where  $A^{Z\otimes X} \cong (A^X)^Z$ .

## **Enriched equational theories**

#### Definition

Given two  $\mathbb{L}$ -terms s, t of arity (X, Y) we can form the equation

$$(s = t)$$
.

We say that an  $\mathbb{L}$ -structure A satisfies (s = t) if  $s_A = t_A$ . A set  $\mathbb{E}$  of equations is called an equational theory. We denote by  $Mod(\mathbb{E})$  the (enriched) category of models of  $\mathbb{E}$ .

## **Enriched equational theories**

#### Definition

Given two  $\mathbb{L}$ -terms s, t of arity (X, Y) we can form the equation

$$(s = t)$$
.

We say that an  $\mathbb{L}$ -structure A satisfies (s = t) if  $s_A = t_A$ . A set  $\mathbb{E}$  of equations is called an equational theory. We denote by  $Mod(\mathbb{E})$  the (enriched) category of models of  $\mathbb{E}$ .

#### Theorem

The following are equivalent for an enriched category  $\mathcal{K}$ :

- **1**  $\mathcal{K} \simeq \mathsf{Mod}(\mathbb{E})$  for some equational theory  $\mathbb{E}$ ;
- **2**  $\mathcal{K} \simeq \operatorname{Alg}(T)$  for a finitary monad T on  $\mathcal{V}$ ;
- **8**  $\mathcal{K} \simeq FP(\mathcal{T}, \mathcal{V})$  is the category of models of an enriched Lawvere theory.

## **Examples: K**-Vect and Ab

#### $\mathcal{V} = \mathbb{K}\text{-}\text{Vect}$

$$\mathsf{Fin}(\mathbb{K}\operatorname{-}\mathbf{Vect}) = \{\mathbb{K}^n\}_{n \ge 0}$$
 and

 $V^{\mathbb{K}^n}\cong V^n$ 

for any  $\mathbb{K}$ -vector space V. A language  $\mathbb{L}$  over  $\mathbb{K}$ -**Vect** is just an ordinary language. An  $\mathbb{L}$ -structure is given by  $V \in \mathbb{K}$ -**Vect** t.w.

$$f_V \colon V^n \to V$$

for any  $f \in \mathbb{L}$ .

Terms are build as ordinary terms plus:

- if s, t are terms, then s + t is a term;
- if t is a term and  $k \in \mathbb{K}$ , then  $k \cdot t$  is a term.

## Examples: **K**-Vect and Ab

#### $\mathcal{V} = \mathbb{K}\text{-}\text{Vect}$

Fin(
$$\mathbb{K}$$
-Vect) = { $\mathbb{K}^n$ } <sub>$n \ge 0$</sub>  and  $\mathcal{V}^{\mathbb{K}^n} \simeq \mathcal{V}^n$ 

for any  $\mathbb{K}$ -vector space V. A language  $\mathbb{L}$  over  $\mathbb{K}$ -**Vect** is just an ordinary language. An  $\mathbb{L}$ -structure is given by  $V \in \mathbb{K}$ -**Vect** t.w.

$$f_V \colon V^n \to V$$

for any  $f \in \mathbb{L}$ .

Terms are build as ordinary terms plus:

- if s, t are terms, then s + t is a term;
- if t is a term and  $k \in \mathbb{K}$ , then  $k \cdot t$  is a term.

#### $\mathcal{V} = \mathbf{Ab}$

 $Fin(\mathbf{Ab}) = direct sums of \mathbb{Z} and \mathbb{Z}/m\mathbb{Z}$ ; and

$$G^{\mathbb{Z}/m\mathbb{Z}} \cong G_m := \{x \in G | mx = 0\}$$

for any abelian group G. A language  $\mathbb{L}$  has function sym. with arity  $(\mathbb{Z}^n \oplus \mathbb{Z}/m_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/m_k\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}),$ an  $\mathbb{L}$ -structure is given by  $G \in \mathbf{Ab}$  t.w.  $f_G : G^n \oplus G_m, \oplus \cdots \oplus G_{m_k} \to G_m$ 

for any  $f \in \mathbb{L}$ .

Terms are build as ordinary terms plus:

• if *s*, *t* are terms, then *s* + *t* is a term and -*t* is a term.

# **Examples:** Pos and Met

#### $\mathcal{V} = \textbf{Pos}$

 $Fin(Pos) = \{X = (S, \leq) | S \text{ is finite}\}$  and

$$P^X \cong \mathbf{Pos}(X, P)$$

for any poset P. Consider  $\mathcal{D} := \{0 \leq 1\}$ , so that

$$P^2 = \{(x, y) \in P \times P \mid x \leq y\}.$$

It is enough to work with (X, 2)-ary terms (believe me). Suppose X = n is discrete. Any (n, 2)-ary term t, with interpretation  $t_P \colon P^n \to P^2$ , induces two classical *n*-ary terms  $t^1$ ,  $t^2$  such that

$$t_P^1(a_1,\ldots a_n) \leq t_P^2(a_1,\ldots,a_n).$$

Thus, equational theories over Pos include inequalities. See [Adámek, Ford, Milius, Schröder].

## **Examples: Pos and Met**

#### $\mathcal{V} = \textbf{Met}$

Metric spaces with non-expanding maps, consider a countable metric space X

 $M^X \cong \mathbf{Met}(X, M)$ 

for any metric space M. Consider  $2_{\varepsilon} := \{0, 1\}$  with  $d(0, 1) = \varepsilon$ , for  $\varepsilon > 0$ , so that

$$M^{2_{\varepsilon}} = \{(x, y) \in P \times P \mid d(x, y) \leq \varepsilon\}.$$

It is enough to work with  $(X, 2_{\varepsilon})$ -ary terms (believe me). Suppose X = n is discrete. Any  $(n, 2_{\varepsilon})$ -ary term t, with interpretation  $t_M \colon M^n \to M^{2_{\varepsilon}}$ , induces two classical *n*-ary terms  $t^1, t^2$  such that

$$d(t^1_{\mathcal{M}}(a_1,\ldots,a_n),t^2_{\mathcal{M}}(a_1,\ldots,a_n)) \leq \varepsilon.$$

Thus, equational theories over Met include equalities up to  $\epsilon$ . See [Adámek, Dostál, Velebil].

# **Thank You**