

On continuity of functors between locally presentable categories

Giacomo Tendas

8 December 2021

Locally presentable categories

Locally presentable categories have been introduced by Gabriel and Ulmer in 1971.

Examples include:

- (Finitary) varieties; models of equational theories (Gep, Rug...)
 (Finitary) quasivarieties; m implication theories (Gea, Aby)

- Grothendieck topoi;
 Categories of models of limit sketches; <=> locally prev.
 Categories of models of essential algebraic theories

Locally finitely presentable categories

Definition by examples:

The actual definition

Definition

A category \mathcal{K} is called **locally finitely presentable** if it is cocomplete and has a set of finitely presentable objects which generates \mathcal{K} under directed colimits.

Other examples:

Ly every object of K is a directed colimf of objects from Kp.

has all coproducts , and coequalizers.

The theorem

Theorem

Let \mathcal{K} be locally finitely presentable. There exists a regular cardinal γ for which every finitary $F: \mathcal{K} \to \mathcal{L}$, with \mathcal{L} locally finitely presentable, is γ -continuous if and only if it is continuous.

The optimal regular cardinal γ provided by our proofs is one for which:

- \mathcal{K}_f has less than γ objects (up to isomorphism);
- there exists β such that $\gamma > \beta > \# Hom(X, Y)$ for each $X, Y \in \mathcal{K}_f$.

$$z_{g}$$
. $K = Set$ $\vartheta = \vartheta_{s}$

+ preserves divected colimits

Dualizable objects

An *R*-module *M* is called dualizable if $M \otimes - \cong \operatorname{Hom}(M^*, -)$ for some $M^* \not\in \operatorname{Hom}(\mathcal{H}, \mathcal{I})$

Corollary

An *R*-module *M* is dualizable if and only if it is flat and $M \otimes -$ preserves γ -small products.

Note: if R if finite, then R-Mod_f has countably many objects and its hom-sets are all finite; so we can choose $\gamma = \aleph_1$;

Dualizable objects

An *R*-module *M* is called dualizable if $M \otimes - \cong \text{Hom}(M^*, -)$ for some M^* .

Corollary

An *R*-module *M* is dualizable if and only if it is flat and $M \otimes -$ preserves γ -small products.

Note: if R if finite, then R-Mod_f has countably many objects and its hom-sets are all finite; so we can choose $\gamma = \aleph_1$;

Let $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$ be a symmetric monoidal closed and locally presentable category:

Corollary

There exists a regular cardinal γ such that an object $X \in \mathcal{V}$ is dualizable if and only if $X \otimes -: \mathcal{V} \to \mathcal{V}$ is γ -continuous.

An adjoint functor theorem

In general, for finitely presentable categories we know that:

Theorem

For any finitary functor $U: \mathcal{K} \to \mathcal{L}$ between locally finitely presentable categories, the following are equivalent:

- **1** *U* has a left adjoint;
- **2** *U* is continuous.

An adjoint functor theorem

In general, for finitely presentable categories we know that:

Theorem

For any finitary functor $U: \mathcal{K} \to \mathcal{L}$ between locally finitely presentable categories, the following are equivalent:

- 1 U has a left adjoint;
- **2** *U* is continuous.

Fixing the domain \mathcal{K} , we can specialize it as follows:

Theorem

Let \mathcal{K} be locally finitely presentable. There exists a regular cardinal γ such that for any finitary functor $U: \mathcal{K} \to \mathcal{L}$, with \mathcal{L} locally finitely presentable, the following are equivalent:

- 1 U has a left adjoint;
- **2** U is γ -continuous.

The enriched version

Let $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$ be a symmetric monoidal closed and locally finitely presentable category. The results above also hold in an enriched setting:

Theorem

Let \mathcal{K} be a locally finitely presentable \mathcal{V} -category. There exists a regular cardinal γ for which every finitary $F \colon \mathcal{K} \to \mathcal{L}$, with \mathcal{L} locally finitely presentable, is γ -continuous if and only if it is continuous.

Thank You