

Regular Theories Enriched Over Finitary Varieties

Giacomo Tendas

Joint work with: Stephen Lack

4 December 2019

3 Enriched Categories

A Theory is given by a list of axioms on a fixed set of operations; its models are corresponding sets and functions that satisfy those axioms.

Algebraic Theories:

 Axioms consist of equations based on the operation symbols of the language;

Abelian groups:

Models of the following algebraic theory:

$$(x + y) + z = x + (y + z), x + y = y + x$$

 $x + 0 = x, x + (-x) = 0,$

With operation symbols $+: G \times G \rightarrow G$ and $-(): G \rightarrow G$.

A Theory is given by a list of axioms on a fixed set of operations; its models are corresponding sets and functions that satisfy those axioms.

Algebraic Theories:

• Axioms consist of equations based on the operation symbols of the language;

Abelian groups:

Models of the following algebraic theory:

$$(x + y) + z = x + (y + z), x + y = y + x$$

 $x + 0 = x, x + (-x) = 0,$

With operation symbols $+: G \times G \rightarrow G$ and $-(): G \rightarrow G$.

Essentially Algebraic Theories:

• Axioms are still equations but the operation symbols are not defined globally (only on equationally defined subsets);

Graphs:

Sorts: edge and vertex; Operations: $s, t : edge \rightarrow vertex$ (s =source and t =target); One partial operation $\sigma : edge \times edge \rightarrow edge$ s.t. $\sigma(x, y)$ is defined iff s(x) = s(y) and t(x) = t(y). Axioms: $\sigma(x, y) = x$, $\sigma(x, y) = y$

Essentially Algebraic Theories:

• Axioms are still equations but the operation symbols are not defined globally (only on equationally defined subsets);

Graphs:

Sorts: *edge* and *vertex*; Operations: $s, t : edge \rightarrow vertex$ (s =source and t =target); One partial operation $\sigma : edge \times edge \rightarrow edge$ s.t. $\sigma(x, y)$ is defined iff s(x) = s(y) and t(x) = t(y). Axioms: $\sigma(x, y) = x$, $\sigma(x, y) = y$

Essentially Algebraic Theories:

• Axioms are still equations but the operation symbols are not defined globally (only on equationally defined subsets);

Graphs:

Sorts: edge and vertex; Operations: $s, t : edge \rightarrow vertex$ (s =source and t =target); One partial operation $\sigma : edge \times edge \rightarrow edge$ s.t. $\sigma(x, y)$ is defined iff s(x) = s(y) and t(x) = t(y). Axioms: $\sigma(x, y) = x$, $\sigma(x, y) = y$

Regular Theories:

• Allow existential quantification over the usual equations (i.e. we can ask some maps to be surjective).

Von Neumann regular rings:

Models R of the regular theory with axioms

- associative rings with unit;
- ∀a ∃b a = aba; i.e.

i.e. the map $\operatorname{Rng}(A, R) \xrightarrow{\circ r} \operatorname{Rng}(\mathbb{Z}[x], R)$ is surjective.

Regular Theories:

• Allow existential quantification over the usual equations (i.e. we can ask some maps to be surjective).

Von Neumann regular rings:

Models R of the regular theory with axioms

- associative rings with unit;
- ∀a ∃b a = aba; i.e.

$$\mathbb{Z}[x] \xrightarrow{f} A := \mathbb{Z}\langle x, y \rangle / x = xyx$$

i.e. the map $\operatorname{Rng}(A, R) \xrightarrow{-\circ f} \operatorname{Rng}(\mathbb{Z}[x], R)$ is surjective.

Regular Theories:

• Allow existential quantification over the usual equations (i.e. we can ask some maps to be surjective).

Von Neumann regular rings:

Models R of the regular theory with axioms

- associative rings with unit;
- ∀a ∃b a = aba; i.e.

$$\mathbb{Z}[x] \xrightarrow{f} A := \mathbb{Z}\langle x, y \rangle / x = xyx$$

i.e. the map $\operatorname{Rng}(A, R) \xrightarrow{-\circ f} \operatorname{Rng}(\mathbb{Z}[x], R)$ is surjective.

- Algebraic Theories: categories with finite products; their models are finite product preserving functors [Lawvere,63].
- 2 Essentially Algebraic Theories: categories with finite limits; lex functors are their models [Freyd,72].
- 3 Regular Theories: regular categories; their models are regular functors [Makkai-Reyes,77].

- Algebraic Theories: categories with finite products; their models are finite product preserving functors [Lawvere,63].
- 2 Essentially Algebraic Theories: categories with finite limits; lex functors are their models [Freyd,72].
- 3 Regular Theories: regular categories; their models are regular functors [Makkai-Reyes,77].

- Algebraic Theories: categories with finite products; their models are finite product preserving functors [Lawvere,63].
- 2 Essentially Algebraic Theories: categories with finite limits; lex functors are their models [Freyd,72].
- 3 Regular Theories: regular categories; their models are regular functors [Makkai-Reyes,77].

- Algebraic Theories: categories with finite products; their models are finite product preserving functors [Lawvere,63].
- 2 Essentially Algebraic Theories: categories with finite limits; lex functors are their models [Freyd,72].
- 3 Regular Theories: regular categories; their models are regular functors [Makkai-Reyes,77].

• The two notions of theory, categorical and logical, can be recovered from each other: given a logical theory, produce a category with the relevant structure for which models of the theory correspond to functors to **Set** preserving this structure, and vice versa.

For essentially algebraic theories there is a duality between theories and their models:

Theorem (Gabriel-Ulmer)

The following is a biequivalence of 2-categories:

 $Lfp(-, \mathbf{Set}) : Lfp \longrightarrow Lex^{op} : Lex(-, \mathbf{Set}).$

• The two notions of theory, categorical and logical, can be recovered from each other: given a logical theory, produce a category with the relevant structure for which models of the theory correspond to functors to **Set** preserving this structure, and vice versa.

For essentially algebraic theories there is a duality between theories and their models:

```
Theorem (Gabriel-Ulmer)
```

$$Lfp(-, \mathbf{Set}) : \mathbf{Lfp} \longrightarrow \mathbf{Lex}^{op} : \mathrm{Lex}(-, \mathbf{Set}).$$

Regular and Exact Categories

Regular Categories: finitely complete ones with coequalizers of kernel pairs, for which regular epimorphisms are pullback stable.

Theorem (Barr's Embedding)

Let C be a small regular category; then the evaluation functor ev : $C \rightarrow [\text{Reg}(C, \text{Set}), \text{Set}]$ is fully faithful and regular.

Exact Categories: regular ones with effective equivalence relations.

Theorem (Makkai's Image Theorem)

Let C be a small exact category. The essential image of the embedding ev : $C \rightarrow [\text{Reg}(C, \text{Set}), \text{Set}]$ is given by those functors which preserve filtered colimits and small products.

Regular and Exact Categories

Regular Categories: finitely complete ones with coequalizers of kernel pairs, for which regular epimorphisms are pullback stable.

Theorem (Barr's Embedding)

Let C be a small regular category; then the evaluation functor ev : $C \rightarrow [\text{Reg}(C, \text{Set}), \text{Set}]$ is fully faithful and regular.

Exact Categories: regular ones with effective equivalence relations.

Theorem (Makkai's Image Theorem)

Let C be a small exact category. The essential image of the embedding ev : $C \rightarrow [\text{Reg}(C, \text{Set}), \text{Set}]$ is given by those functors which preserve filtered colimits and small products.

Regular and Exact Categories

Regular Categories: finitely complete ones with coequalizers of kernel pairs, for which regular epimorphisms are pullback stable.

Theorem (Barr's Embedding)

Let C be a small regular category; then the evaluation functor ev : $C \rightarrow [\text{Reg}(C, \text{Set}), \text{Set}]$ is fully faithful and regular.

Exact Categories: regular ones with effective equivalence relations.

Theorem (Makkai's Image Theorem)

Let C be a small exact category. The essential image of the embedding ev : $C \rightarrow [\text{Reg}(C, \text{Set}), \text{Set}]$ is given by those functors which preserve filtered colimits and small products.

Duality for Exact Categories

- On one side of the duality there is the 2-category **Ex** of exact categories, regular functors, and natural transformations.
- On the other side is a 2-category **Def** whose objects are called definable categories and correspond to models of regular theories.

Theorem (Prest-Rajani/Kuber-Rosický)

$$\mathsf{Def}(-, \mathbf{Set}) : \mathbf{Def} \longrightarrow \mathbf{Ex}^{op} : \mathsf{Reg}(-, \mathbf{Set})$$

Duality for Exact Categories

- On one side of the duality there is the 2-category **Ex** of exact categories, regular functors, and natural transformations.
- On the other side is a 2-category **Def** whose objects are called definable categories and correspond to models of regular theories.

Theorem (Prest-Rajani/Kuber-Rosický)

$$\mathsf{Def}(-, \mathbf{Set}) : \mathbf{Def} \longrightarrow \mathbf{Ex}^{op} : \mathsf{Reg}(-, \mathbf{Set})$$

Duality for Exact Categories

- On one side of the duality there is the 2-category **Ex** of exact categories, regular functors, and natural transformations.
- On the other side is a 2-category **Def** whose objects are called definable categories and correspond to models of regular theories.

Theorem (Prest-Rajani/Kuber-Rosický)

$$\mathsf{Def}(-, \mathbf{Set}) : \mathbf{Def} \longrightarrow \mathbf{Ex}^{op} : \mathsf{Reg}(-, \mathbf{Set})$$

Enriched Categories

- Replace Set with a symmetric monoidal closed category $\mathcal{V} = (\mathcal{V}_0, I, \otimes).$
- A \mathcal{V} -enriched category \mathcal{B} is given by:
 - **1** a collection of objects X, Y, Z, \ldots ;
 - **2** a morphism object $\mathcal{B}(X, Y)$ in \mathcal{V} , for each X, Y;
 - **3** composition maps $\mathcal{B}(Y, Z) \otimes \mathcal{B}(X, Y) \to \mathcal{B}(X, Z)$ in \mathcal{V} ;
 - 4 identities $I \to \mathcal{B}(X, X)$, etc. (coherence axioms).
- A functor $F : \mathcal{B} \to \mathcal{C}$ between \mathcal{V} -categories is determined by:
 - **1** an object FX of C for each X in \mathcal{B} ;
 - **2** a morphism $F_{XY} : \mathcal{B}(X, Y) \to \mathcal{C}(FX, FY)$ in \mathcal{V} , for each X, Y, satisfying some axioms.

- $\mathcal{V} = Ab$, *R*-Mod for a commutative ring *R*;
- $\mathcal{V} = Cat, sSet, Ban, \dots$

- Our bases for enrichment will generally be models of (unsorted) algebraic theories, this are called finitary varieties.
- Categories of the form FP(C, **Set**), consisting of finite product preserving functors for some small category C with finite products (and splitting idempotents).
- Equivalently a finitary variety can be described as an exact finitary quasivariety.

We consider the monoidal closed structures on FP(C, Set) for which the tensor product restricts along the Yoneda embedding

$$Y: \mathcal{C}^{op} \hookrightarrow \mathsf{FP}(\mathcal{C}, \mathbf{Set})$$

- Our bases for enrichment will generally be models of (unsorted) algebraic theories, this are called finitary varieties.
- Categories of the form FP(C, **Set**), consisting of finite product preserving functors for some small category C with finite products (and splitting idempotents).
- Equivalently a finitary variety can be described as an exact finitary quasivariety.

We consider the monoidal closed structures on FP(C, Set) for which the tensor product restricts along the Yoneda embedding

$$Y: \mathcal{C}^{op} \hookrightarrow \mathsf{FP}(\mathcal{C}, \mathbf{Set})$$

- Our bases for enrichment will generally be models of (unsorted) algebraic theories, this are called finitary varieties.
- Categories of the form FP(C, **Set**), consisting of finite product preserving functors for some small category C with finite products (and splitting idempotents).
- Equivalently a finitary variety can be described as an exact finitary quasivariety.

We consider the monoidal closed structures on FP(C, Set) for which the tensor product restricts along the Yoneda embedding

$$Y: \mathcal{C}^{op} \hookrightarrow \mathsf{FP}(\mathcal{C}, \mathbf{Set})$$

- Our bases for enrichment will generally be models of (unsorted) algebraic theories, this are called finitary varieties.
- Categories of the form FP(C, **Set**), consisting of finite product preserving functors for some small category C with finite products (and splitting idempotents).
- Equivalently a finitary variety can be described as an exact finitary quasivariety.

We consider the monoidal closed structures on FP(C, Set) for which the tensor product restricts along the Yoneda embedding

$$Y: \mathcal{C}^{op} \hookrightarrow \mathsf{FP}(\mathcal{C}, \mathbf{Set})$$

General Bases for Enrichment

Let $\mathcal{V} = (\mathcal{V}_0, I, \otimes)$ be a symmetric monoidal closed category.

Recall: An object A of \mathcal{V}_0 is called finite projective if the hom-functor $\mathcal{V}_0(A, -) : \mathcal{V}_0 \to \mathbf{Set}$ preserves filtered colimits and regular epimorphisms; denote by $(\mathcal{V}_0)_{pf}$ the full subcategory of finite projective objects.

Definition

Let $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$ be a symmetric monoidal closed category. We say that \mathcal{V} is a symmetric monoidal finitary quasivariety if:

- V₀ is cocomplete with strong generator P ⊆ (V₀)_{pf} (i.e. is a finitary quasivariety);
- **2** $I \in (\mathcal{V}_0)_f$;
- **3** if $P, Q \in \mathcal{P}$ then $P \otimes Q \in (\mathcal{V}_0)_{pf}$.

General Bases for Enrichment

Let $\mathcal{V} = (\mathcal{V}_0, I, \otimes)$ be a symmetric monoidal closed category.

Recall: An object A of \mathcal{V}_0 is called finite projective if the hom-functor $\mathcal{V}_0(A, -) : \mathcal{V}_0 \to \mathbf{Set}$ preserves filtered colimits and regular epimorphisms; denote by $(\mathcal{V}_0)_{pf}$ the full subcategory of finite projective objects.

Definition

Let $\mathcal{V} = (\mathcal{V}_0, \otimes, I)$ be a symmetric monoidal closed category. We say that \mathcal{V} is a symmetric monoidal finitary quasivariety if:

- V₀ is cocomplete with strong generator P ⊆ (V₀)_{pf} (i.e. is a finitary quasivariety);
- **2** $I \in (\mathcal{V}_0)_f;$
- **3** if $P, Q \in \mathcal{P}$ then $P \otimes Q \in (\mathcal{V}_0)_{pf}$.

- Set, Ab, *R*-Mod and GR-*R*-Mod, for each commutative ring *R*, with the usual tensor product;
- [C^{op}, Set], for any category C with finite products, equipped with the cartesian product;
- 3 pointed sets Set with the smash product;
- **4** *G*-sets **Set**^{*G*} for a finite group *G* with the cartesian product;
- **5** directed graphs **Gra** with the cartesian product;
- Ch(A) for each abelian and symmetric monoidal finitary quasivariety A, with the tensor product inherited from A;
- $\boldsymbol{0}$ torsion free abelian groups $\mathbf{A}\mathbf{b}_{tf}$ with the usual tensor product;
- 8 binary relations **BRel** with the cartesian product;

Regular \mathcal{V} -categories

Definition

A $\mathcal V\text{-}\mathsf{category}\ \mathcal C$ is called regular if:

- it has all finite weighted limits and coequalizers of kernel pairs;
- regular epimorphisms are stable under pullback and closed under powers by elements of *P* ⊆ (*V*₀)_{*pf*}.

 $F : C \to D$ between regular V-categories is called regular if it preserves finite weighted limits and regular epimorphisms.

- \mathcal{V} itself is regular as a \mathcal{V} -category;
- if C is regular as a V-category then C_0 is a regular category;

Theorem (Barr's Embedding)

Let C be a small regular V-category; then the evaluation functor $ev_{\mathcal{C}} : \mathcal{C} \to [Reg(\mathcal{C}, \mathcal{V}), \mathcal{V}]$ is fully faithful and regular.

Regular \mathcal{V} -categories

Definition

A $\mathcal V\text{-}\mathsf{category}\ \mathcal C$ is called regular if:

- it has all finite weighted limits and coequalizers of kernel pairs;
- regular epimorphisms are stable under pullback and closed under powers by elements of *P* ⊆ (*V*₀)_{*pf*}.

 $F : C \to D$ between regular V-categories is called regular if it preserves finite weighted limits and regular epimorphisms.

- \mathcal{V} itself is regular as a \mathcal{V} -category;
- if C is regular as a V-category then C_0 is a regular category;

Theorem (Barr's Embedding)

Let C be a small regular V-category; then the evaluation functor $ev_{\mathcal{C}}: \mathcal{C} \to [Reg(\mathcal{C}, \mathcal{V}), \mathcal{V}]$ is fully faithful and regular.

Regular \mathcal{V} -categories

Definition

A $\mathcal V\text{-}\mathsf{category}\ \mathcal C$ is called regular if:

- it has all finite weighted limits and coequalizers of kernel pairs;
- regular epimorphisms are stable under pullback and closed under powers by elements of *P* ⊆ (*V*₀)_{*pf*}.

 $F : C \to D$ between regular V-categories is called regular if it preserves finite weighted limits and regular epimorphisms.

- \mathcal{V} itself is regular as a \mathcal{V} -category;
- if C is regular as a V-category then C_0 is a regular category;

Theorem (Barr's Embedding)

Let C be a small regular V-category; then the evaluation functor $ev_{\mathcal{C}}: \mathcal{C} \to [Reg(\mathcal{C}, \mathcal{V}), \mathcal{V}]$ is fully faithful and regular.

Exact \mathcal{V} -categories

Definition

A \mathcal{V} -category \mathcal{B} is called exact if it is regular and in addition the ordinary category \mathcal{B}_0 is exact in the usual sense.

- Taking $\mathcal{V} = \mathbf{Set}$ or $\mathcal{V} = \mathbf{Ab}$ this notion coincides with the ordinary one of exact or abelian category.
- If ${\mathcal V}$ is a symmetric monoidal finitary variety, ${\mathcal V}$ is exact as a ${\mathcal V}\text{-category.}$

Theorem (Makkai's Image Theorem)

For any small exact \mathcal{V} -category \mathcal{B} ; the essential image of ev_{\mathcal{B}} : $\mathcal{B} \longrightarrow [\text{Reg}(\mathcal{B}, \mathcal{V}), \mathcal{V}]$ is given by those functors which preserve small products, filtered colimits and projective powers.

Exact \mathcal{V} -categories

Definition

A \mathcal{V} -category \mathcal{B} is called exact if it is regular and in addition the ordinary category \mathcal{B}_0 is exact in the usual sense.

- Taking $\mathcal{V} = \mathbf{Set}$ or $\mathcal{V} = \mathbf{Ab}$ this notion coincides with the ordinary one of exact or abelian category.
- If V is a symmetric monoidal finitary variety, V is exact as a V-category.

Theorem (Makkai's Image Theorem)

For any small exact \mathcal{V} -category \mathcal{B} ; the essential image of $ev_{\mathcal{B}} : \mathcal{B} \longrightarrow [Reg(\mathcal{B}, \mathcal{V}), \mathcal{V}]$ is given by those functors which preserve small products, filtered colimits and projective powers.

Duality for Enriched Exact Categories

Assume $\ensuremath{\mathcal{V}}$ to be a symmetric monoidal finitary variety, then

- call a V-category D definable if it is equivalent to Reg(C, V) for a small regular V-category C;
- for each definable $\mathcal{D},$ the $\mathcal{V}\text{-category}\;\mathsf{Def}(\mathcal{D},\mathcal{V})$ is small and exact.

This and Makkai's Image Theorem imply:

Theorem

Let ${\mathcal V}$ be a symmetric monoidal finitary variety. Then the 2-adjunction

$$\mathsf{Def}(-,\mathcal{V}):\mathcal{V}\text{-}\mathsf{Def} \xrightarrow{\longrightarrow} \mathcal{V}\text{-}\mathsf{Ex}^{op}:\mathsf{Reg}(-,\mathcal{V})$$

is a biequivalence.

Duality for Enriched Exact Categories

Assume $\ensuremath{\mathcal{V}}$ to be a symmetric monoidal finitary variety, then

- call a V-category D definable if it is equivalent to Reg(C, V) for a small regular V-category C;
- for each definable $\mathcal{D},$ the $\mathcal{V}\text{-category}\;\mathsf{Def}(\mathcal{D},\mathcal{V})$ is small and exact.

This and Makkai's Image Theorem imply:

Theorem

Let ${\mathcal V}$ be a symmetric monoidal finitary variety. Then the 2-adjunction

$$\mathsf{Def}(-,\mathcal{V}):\mathcal{V}\text{-}\mathsf{Def} \xrightarrow{\longrightarrow} \mathcal{V}\text{-}\mathsf{Ex}^{op}:\mathsf{Reg}(-,\mathcal{V})$$

is a biequivalence.

Thank You

The support of these institutions is gratefully acknowledged