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Theories

Theories in Logic

A Theory is given by a list of axioms on a fixed set of operations;
its models are corresponding sets and functions that satisfy those
axioms.

Algebraic Theories:
• Axioms consist of equations based on the operation symbols

of the language;

Abelian groups:

Models of the following algebraic theory:

(x + y) + z = x + (y + z), x + y = y + x
x + 0 = x , x + (−x) = 0,

With operation symbols + : G × G → G and −( ) : G → G .
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Theories

Theories in Logic

Essentially Algebraic Theories:
• Axioms are still equations but the operation symbols are not

defined globally (only on equationally defined subsets);

Graphs:

Sorts: edge and vertex ;
Operations: s, t : edge → vertex (s =source and t =target);
One partial operation σ : edge × edge → edge s.t. σ(x , y) is
defined iff s(x) = s(y) and t(x) = t(y).
Axioms: σ(x , y) = x , σ(x , y) = y
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Theories

Theories in Logic

Regular Theories:

• Allow existential quantification over the usual equations (i.e.
we can ask some maps to be surjective).

Von Neumann regular rings:

Models R of the regular theory with axioms

• associative rings with unit;

• ∀a ∃b a = aba; i.e.

Z[x ] A := Z〈x , y〉�x = xyx

R

f

∀ a ∃ (a, b)

i.e. the map Rng(A,R)
−◦f−→ Rng(Z[x ],R) is surjective.
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Theories

Theories in Category Theory

Categorically speaking, we could think of a Theory as a category C
with some structure, and of a model of C as a functor F : C → Set
which preserves that structure.

Examples

1 Algebraic Theories: categories with finite products; their
models are finite product preserving functors [Lawvere,63].

2 Essentially Algebraic Theories: categories with finite limits; lex
functors are their models [Freyd,72].

3 Regular Theories: regular categories; their models are regular
functors [Makkai-Reyes,77].
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Theories

Gabriel-Ulmer Duality

• The two notions of theory, categorical and logical, can be
recovered from each other: given a logical theory, produce a
category with the relevant structure for which models of the
theory correspond to functors to Set preserving this structure,
and vice versa.

For essentially algebraic theories there is a duality between theories
and their models:

Theorem (Gabriel-Ulmer)

The following is a biequivalence of 2-categories:

Lfp(−,Set) : Lfp Lexop : Lex(−,Set).
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Regular Theories

Regular and Exact Categories

Regular Categories: finitely complete ones with coequalizers of
kernel pairs, for which regular epimorphisms are pullback stable.

Theorem (Barr’s Embedding)

Let C be a small regular category; then the evaluation functor
ev : C → [Reg(C,Set),Set] is fully faithful and regular.

Exact Categories: regular ones with effective equivalence relations.

Theorem (Makkai’s Image Theorem)

Let C be a small exact category. The essential image of the
embedding ev : C → [Reg(C,Set),Set] is given by those functors
which preserve filtered colimits and small products.
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Regular Theories

Duality for Exact Categories

• On one side of the duality there is the 2-category Ex of exact
categories, regular functors, and natural transformations.

• On the other side is a 2-category Def whose objects are called
definable categories and correspond to models of regular
theories.

Theorem (Prest-Rajani/Kuber-Rosický)

The following is a biequivalence of 2-categories:

Def(−,Set) : Def Exop : Reg(−,Set)
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The following is a biequivalence of 2-categories:

Def(−,Set) : Def Exop : Reg(−,Set)

9 of 17



Regular Theories

Duality for Exact Categories

• On one side of the duality there is the 2-category Ex of exact
categories, regular functors, and natural transformations.

• On the other side is a 2-category Def whose objects are called
definable categories and correspond to models of regular
theories.

Theorem (Prest-Rajani/Kuber-Rosický)
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Enriched Categories

Enriched Categories

• Replace Set with a symmetric monoidal closed category
V = (V0, I ,⊗).
• A V-enriched category B is given by:

1 a collection of objects X ,Y ,Z , . . . ;
2 a morphism object B(X ,Y ) in V, for each X ,Y ;
3 composition maps B(Y ,Z )⊗ B(X ,Y )→ B(X ,Z ) in V;
4 identities I → B(X ,X ), etc. (coherence axioms).

• A functor F : B → C between V-categories is determined by:

1 an object FX of C for each X in B;
2 a morphism FXY : B(X ,Y )→ C(FX ,FY ) in V, for each X ,Y ,

satisfying some axioms.

Examples:

• V = Ab, R-Mod for a commutative ring R;
• V = Cat, sSet,Ban, . . .
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Enriched Regular Theories

Varieties as Bases for Enrichment

• Our bases for enrichment will generally be models of
(unsorted) algebraic theories, this are called finitary varieties.

• Categories of the form FP(C,Set), consisting of finite product
preserving functors for some small category C with finite
products (and splitting idempotents).

• Equivalently a finitary variety can be described as an exact
finitary quasivariety.

We consider the monoidal closed structures on FP(C,Set) for
which the tensor product restricts along the Yoneda embedding

Y : Cop ↪→ FP(C,Set)

giving a symmetric monoidal structure (C,⊗, I ).
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Enriched Regular Theories

General Bases for Enrichment

Let V = (V0, I ,⊗) be a symmetric monoidal closed category.

Recall: An object A of V0 is called finite projective if the
hom-functor V0(A,−) : V0 → Set preserves filtered colimits and
regular epimorphisms; denote by (V0)pf the full subcategory of
finite projective objects.

Definition

Let V = (V0,⊗, I ) be a symmetric monoidal closed category. We
say that V is a symmetric monoidal finitary quasivariety if:

1 V0 is cocomplete with strong generator P ⊆ (V0)pf (i.e. is a
finitary quasivariety);

2 I ∈ (V0)f ;

3 if P,Q ∈ P then P ⊗ Q ∈ (V0)pf .

12 of 17



Enriched Regular Theories

General Bases for Enrichment

Let V = (V0, I ,⊗) be a symmetric monoidal closed category.

Recall: An object A of V0 is called finite projective if the
hom-functor V0(A,−) : V0 → Set preserves filtered colimits and
regular epimorphisms; denote by (V0)pf the full subcategory of
finite projective objects.

Definition

Let V = (V0,⊗, I ) be a symmetric monoidal closed category. We
say that V is a symmetric monoidal finitary quasivariety if:

1 V0 is cocomplete with strong generator P ⊆ (V0)pf (i.e. is a
finitary quasivariety);

2 I ∈ (V0)f ;

3 if P,Q ∈ P then P ⊗ Q ∈ (V0)pf .

12 of 17



Enriched Regular Theories

Examples

1 Set, Ab, R-Mod and GR-R-Mod, for each commutative ring
R, with the usual tensor product;

2 [Cop,Set], for any category C with finite products, equipped
with the cartesian product;

3 pointed sets Set∗ with the smash product;

4 G -sets SetG for a finite group G with the cartesian product;

5 directed graphs Gra with the cartesian product;

6 Ch(A) for each abelian and symmetric monoidal finitary
quasivariety A, with the tensor product inherited from A;

7 torsion free abelian groups Abtf with the usual tensor product;

8 binary relations BRel with the cartesian product;
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Enriched Regular Theories

Regular V-categories

Definition

A V-category C is called regular if:

• it has all finite weighted limits and coequalizers of kernel pairs;

• regular epimorphisms are stable under pullback and closed
under powers by elements of P ⊆ (V0)pf .

F : C → D between regular V-categories is called regular if it
preserves finite weighted limits and regular epimorphisms.

• V itself is regular as a V-category;

• if C is regular as a V-category then C0 is a regular category;

Theorem (Barr’s Embedding)

Let C be a small regular V-category; then the evaluation functor
evC : C → [Reg(C,V),V] is fully faithful and regular.

14 of 17



Enriched Regular Theories

Regular V-categories

Definition

A V-category C is called regular if:

• it has all finite weighted limits and coequalizers of kernel pairs;

• regular epimorphisms are stable under pullback and closed
under powers by elements of P ⊆ (V0)pf .

F : C → D between regular V-categories is called regular if it
preserves finite weighted limits and regular epimorphisms.

• V itself is regular as a V-category;

• if C is regular as a V-category then C0 is a regular category;

Theorem (Barr’s Embedding)

Let C be a small regular V-category; then the evaluation functor
evC : C → [Reg(C,V),V] is fully faithful and regular.

14 of 17



Enriched Regular Theories

Regular V-categories

Definition

A V-category C is called regular if:

• it has all finite weighted limits and coequalizers of kernel pairs;

• regular epimorphisms are stable under pullback and closed
under powers by elements of P ⊆ (V0)pf .

F : C → D between regular V-categories is called regular if it
preserves finite weighted limits and regular epimorphisms.

• V itself is regular as a V-category;

• if C is regular as a V-category then C0 is a regular category;

Theorem (Barr’s Embedding)

Let C be a small regular V-category; then the evaluation functor
evC : C → [Reg(C,V),V] is fully faithful and regular.

14 of 17



Enriched Regular Theories

Exact V-categories

Definition

A V-category B is called exact if it is regular and in addition the
ordinary category B0 is exact in the usual sense.

• Taking V = Set or V = Ab this notion coincides with the
ordinary one of exact or abelian category.

• If V is a symmetric monoidal finitary variety, V is exact as a
V-category.

Theorem (Makkai’s Image Theorem)

For any small exact V-category B; the essential image of
evB : B −→ [Reg(B,V),V] is given by those functors which
preserve small products, filtered colimits and projective powers.
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Enriched Regular Theories

Duality for Enriched Exact Categories

Assume V to be a symmetric monoidal finitary variety, then

• call a V-category D definable if it is equivalent to Reg(C,V)
for a small regular V-category C;

• for each definable D, the V-category Def(D,V) is small and
exact.

This and Makkai’s Image Theorem imply:

Theorem

Let V be a symmetric monoidal finitary variety. Then the
2-adjunction

Def(−,V) : V-Def V-Exop : Reg(−,V)

is a biequivalence.
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Enriched Regular Theories

Thank You

The support of these institutions is gratefully acknowledged
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