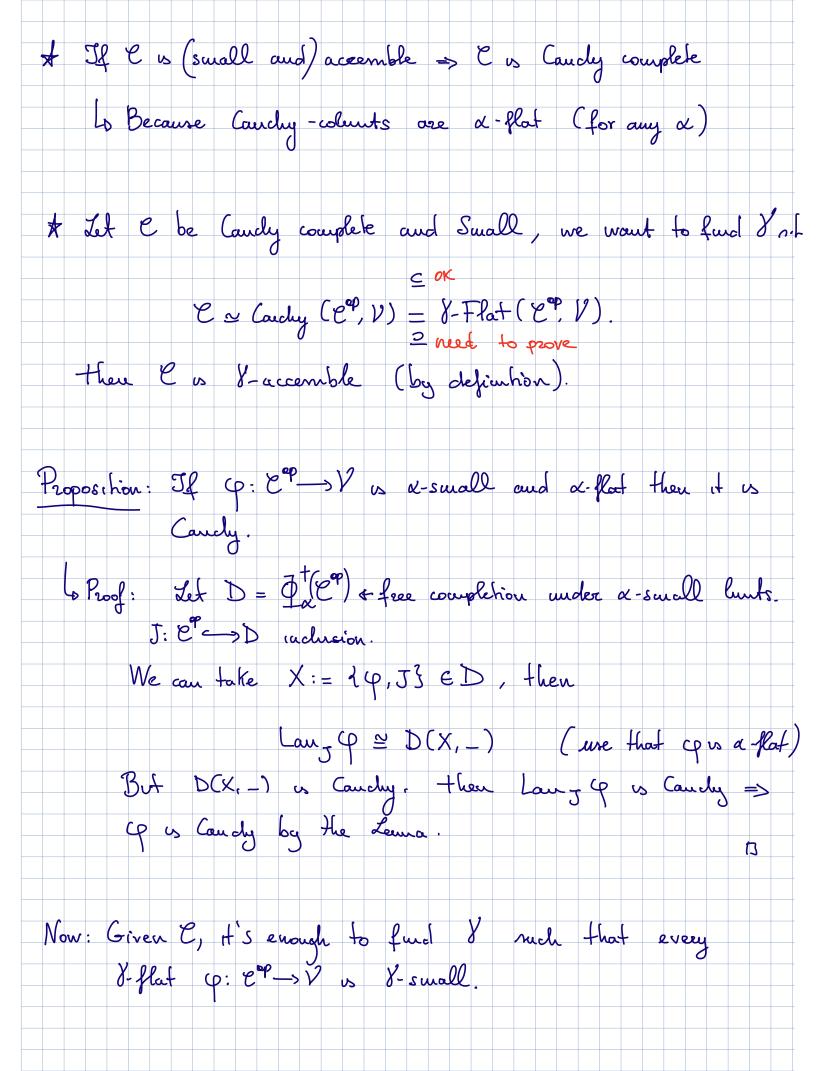
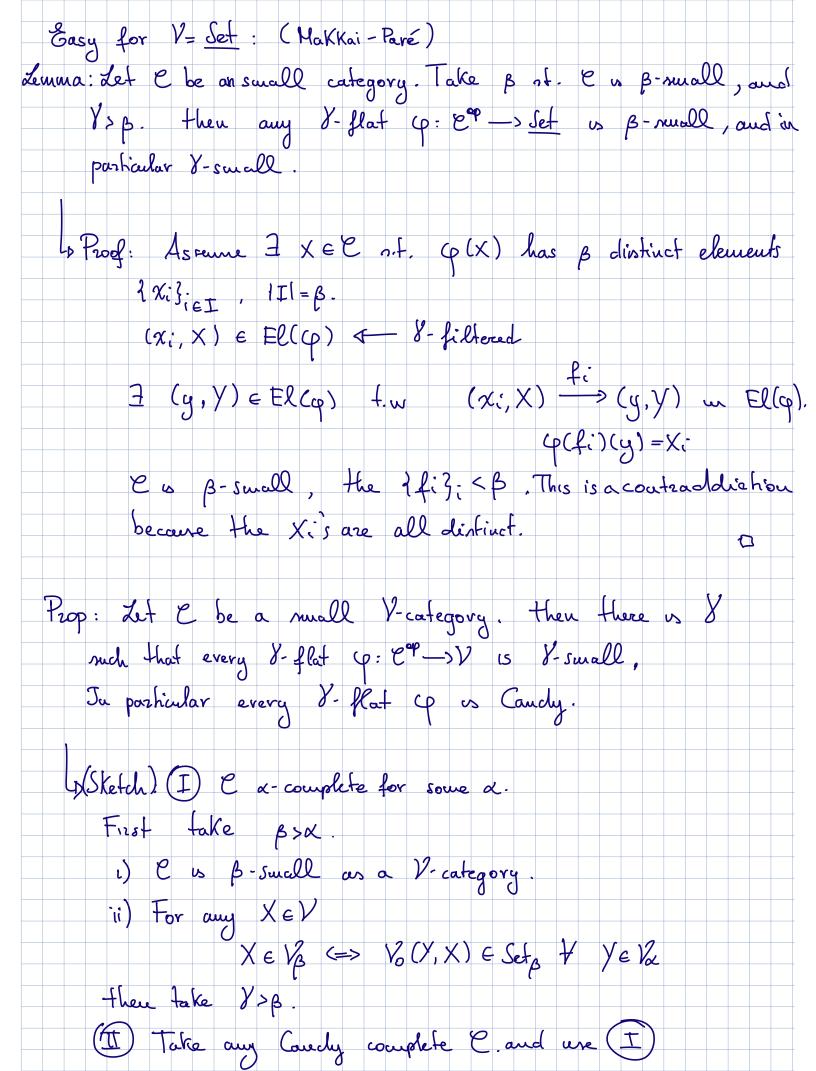


L'From now on every cardinal as 200. Def: Let A be a V-category. . A is conically accemble if it is the free cocoupletion of a small V-category under x-fildered colimits, for some «. • A accemble if A ~ x - Flat (C,V), for a mall C and some d. We work with this. A small V-category is conically accemble (=> it leas splittings of idempokents. III) Flatuess Def: Let $\varphi: \mathcal{C}^{op} \longrightarrow Y$ be a V-functor, we say that φ is (Kelly). &-small if i) \mathcal{C} us α -small: \times $O(\mathcal{C}) < \alpha$, $\mathcal{C}(X,Y) \in V_{\alpha}$ $\ddot{u} \quad \varphi(X) \in \mathcal{V}_{\mathcal{X}} \quad \forall X \in \mathcal{C}.$ • &-mall limits are those weighted by x-mall functors. Def: We say that cp: e^{op} ->V is a plat if y 1 Law y $e^{\circ r} \rightarrow V$ Lange is a - continuous.

But Lawy q ≥ q × _. Equivalently: q coluents commute in V with x-small limits. Prop: Let $cp: \mathcal{C}^{op} \longrightarrow V$ be a \mathcal{V} -functor; TFAE: i) q vs x-glat ii) $\varphi \star - \varphi$ preserves α -mall limits of representables $T_4 \ e^{\mathbf{ap}}$ is α -complete, moreover: iii) (p 15 x- coatimous. Lemma: Green q: esp-V and J: e-D. c) cp is a flat => Langop cp is ac-flat. ic) Jos f.f and langop(p is a - flat => cp is a - flat as well. $\frac{Def}{I.e.} : (e,V) \longrightarrow V \text{ is Cauchy if it is a flat tax.}$ $i.e. \quad (e,V) \longrightarrow V \text{ is continuous.}$ (=> q-colicients are preserved by any V-functor. (p- colimts are absolute). We say that C is Cauchy complete if it has all absolute coliunts, i.e all coliunts weighted by Cauchy fantors. Fact: C is Cauchy complete (=> C ~ Cauchy (C, V) = [C, V] IV) The Result.





theorem : A small V-category & is accemble <> it is Cauchy Couplete. Prop: Let K be locally &-presentable. Then there exist I much that any &-accessible (preserves &-filt colimnts) V-functor $F: K \longrightarrow \mathcal{L}$ (\mathcal{Z} a-accemble V-category) is continuous 't and only if it preserves 8-mall limits. 4) Proof: Take Y as in the Proposition for C=Kx. Mog L = V.• F & continuous • F5 × - prenzves &-small I lunts of representables · FJ v 8-flat • FJ is Cauchy · FJX_ is couhimous_ F is continious. Corollary: XEV is dualizable (=> XO_ is V-continuous.