Some facts about Sound classes of weights Enriched version of "Adamek, Boreaux, Lack, Ronicky" <u>Setting</u>: Syn. non closect category (Vo, ∞, I) which is <u>locally bounded</u> (eg. loc. pres, Top, ...) \underline{Def} : Let $\underline{\Phi}$ be a class of weights $(\underline{\Phi} = \frac{1}{2} + \frac{1$ Let $M: \mathcal{E}^{\mathbf{q}} \longrightarrow \mathcal{V}$ be a \mathcal{V} -functor, we say that M is \oint -flat is M-colimnts commute in \mathcal{V} with \oint -limits $M \times _ : [e, V] \longrightarrow V$ is $\tilde{\Phi}$ -continuous. $\underbrace{\text{Def}}_{i}:i) \text{ We say that } \oint us \underline{\text{sound}} \quad \text{if } \forall M: \mathcal{C}^{\text{op}} \longrightarrow \mathcal{V} \text{ for which}$ M* _ preserves Q-limts of representables, then M is &- Rat. ii) We say that \oint is weakly sound if $\forall M : \mathcal{C}^{\text{ep}} \rightarrow \mathcal{V}$ which is \oint -couhinous (\mathcal{C}^{ep} is \oint -couplete), then M is \oint -flat. $E_X: V = Set$, D = 2 funte calegories 3 ∀ C , <u>A1</u>: C^o → Set, then <u>A1</u> is <u>\$\$</u>-\$kot iff

DGA6 = < fruite direct same, suspensions and So desuspensions > $Q \subseteq Q_{GAb} \cup S \subseteq Q$ Q = < franke direct same, suspensions and =disuspensions, split corg. > (as in my paper with Branko and Ross)