Completions in an (∞, n) -categorical setting

Miika Tuominen

University of Virginia

17.12.2024

Miika Tuominen Completions in an (∞, n) -categorical setting

Complete Segal spaces as $(\infty, 1)$ -categories

Definition

A functor $W \colon \Delta^{\mathrm{op}} \to s\mathcal{S}et$ is a Segal space if

- it is injective/Reedy fibrant, and
- it satisfies the Segal condition: the Segal maps $W_m \to W_1 \underset{W_0}{\times} \cdots \underset{W_0}{\times} W_1$ are weak equivalences of spaces for each m.

A Segal space W is *complete* if each equivalence in W is homotopic to the identity on some object.

Rezk develops a homotopy theory of $(\infty, 1)$ -categories as complete Segal spaces:

Theorem (Rezk)

There is a well-behaved model structure CSS on $Fun(\Delta^{op}, sSet)$ where fibrant objects are precisely complete Segal spaces.

★ E ► ★ E ► E

Definition

A map $f: X \to Y$ is a *DK*-equivalence of $(\infty, 1)$ -categories if

- it is surjective up to equivalence on objects, and
- it induces weak equivalences of spaces $\underline{\operatorname{Hom}}_X(a,b) \to \underline{\operatorname{Hom}}_Y(fa,fb) \text{ for all objects } a \text{ and } b \text{ of } X.$

Weak equivalences of complete Segal spaces behave like weak equivalences of sSet-enriched categories:

Theorem (Rezk)

A map between complete Segal spaces is a DK-equivalence if and only if it is a weak equivalence in CSS.

< 回 ト く ヨ ト く ヨ ト

DK-equivalences are also meaningful between Segal spaces without completeness.

Theorem (Rezk)

There is a fibrant replacement functor that takes each Segal space to a complete Segal space via a DK-equivalence.

Theorem (Rezk)

A map between Segal spaces is a DK-equivalence if and only if it is a weak equivalence in CSS.

As a consequence, completeness may be understood as locality with respect to DK-equivalences.

Complete Segal Θ_n -spaces as (∞, n) -categories

To obtain a model of (∞, n) -categories, we may replace Δ with its *n*-categorical analogue, Θ_n .

Definition

A functor $W: \Theta_n^{\mathrm{op}} \to s\mathcal{S}et$ is a Segal Θ_n -space if

- it is injective/Reedy fibrant, and
- it satisfies a Segal condition for cells of all dimensions up to n.

A Segal Θ_n -space W is *complete* if each k-equivalence in W is homotopic to the identity on some (k-1)-cell for each k.

Theorem (Rezk)

There is a well-behaved model structure $\Theta_n Sp$ on $\operatorname{Fun}(\Theta_n^{op}, s\mathcal{S}et)$ where fibrant objects are precisely complete Segal Θ_n -spaces. We extend the notion of DK-equivalence inductively:

Definition

A map $f: X \to Y$ is a *DK*-equivalence of (∞, n) -categories if

- it is surjective up to equivalence on objects, and
- it induces DK-equivalences of $(\infty, n-1)$ -categories $\underline{\operatorname{Hom}}_X(a, b) \to \underline{\operatorname{Hom}}_Y(fa, fb)$ for all objects a and b of X.

Theorem (Bergner)

A map between complete Segal Θ_n -spaces is a DK-equivalence if and only if it is a weak equivalence in $\Theta_n Sp$. We extend Rezk's completion construction to each of the completeness conditions for Segal Θ_n -spaces.

Theorem (T.)

There is a fibrant replacement functor that takes each Segal Θ_n -space to a complete Segal Θ_n -space via a DK-equivalence.

We also generalize the characterization of DK-equivalences:

Theorem (T.)

A map between Segal Θ_n -spaces is a DK-equivalence if and only if it is a weak equivalence in $\Theta_n Sp$.