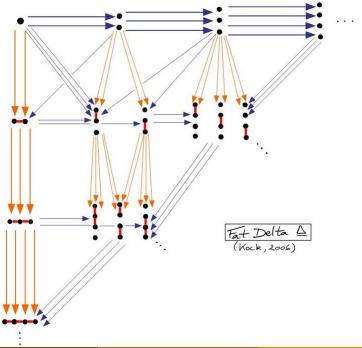
A study of Kock's fat Delta

Tom de Jong¹ Nicolai Kraus¹ Simona Paoli² Stiéphen Pradal¹

¹University of Nottingham ²University of Aberdeen

17th December 2024 Categorical Logic and Higher Categories, Manchester



Introduction of $\underline{\Delta}$

Motivation: Simpson's conjecture

- Motivation for Kock (2006) to introduce $\underline{\Delta}$:
 - ${\scriptstyle \bullet}\,$ The simplex category Δ with degeneracies up to homotopy
 - The identity coherence structure is part of the data as objects
- Motivation, in low dimension, for Paoli (2024) to study $\underline{\Delta}$ further

Introduction of $\underline{\Delta}$

Motivation: Simpson's conjecture

- Motivation for Kock (2006) to introduce $\underline{\Delta}$:
 - $\bullet\,$ The simplex category Δ with degeneracies up to homotopy
 - The identity coherence structure is part of the data as objects
- Motivation, in low dimension, for Paoli (2024) to study Δ further

Motivation: higher categories in homotopical type theories

- Construct Reedy fibrant diagrams over direct categories
- Use simplicial methods

Obstacle: Δ is not a direct category \rightsquigarrow Need a direct replacement

• Introduction of a variation of Δ by Kraus and Sattler (2017)

Introduction of $\underline{\Delta}$

Motivation: Simpson's conjecture

- Motivation for Kock (2006) to introduce $\underline{\Delta}$:
 - $\bullet\,$ The simplex category Δ with degeneracies up to homotopy
 - The identity coherence structure is part of the data as objects
- Motivation, in low dimension, for Paoli (2024) to study $\underline{\Delta}$ further

Motivation: higher categories in homotopical type theories

- Construct Reedy fibrant diagrams over direct categories
- Use simplicial methods

Obstacle: Δ is not a direct category \rightsquigarrow Need a direct replacement

• Introduction of a variation of Δ by Kraus and Sattler (2017)

Definition (Fat Delta $\underline{\Delta}$, Kock 2006)

The category $\underline{\Delta}$ is the category of **relative finite non-empty semiordinals** and maps between them.

Study $\underline{\Delta}$ using the theory of **monads with arities**.

- Generalised nerve constructions
- Algebras as presheaves with (Segal) conditions
- \bullet Correspondence: monads \longleftrightarrow algebraic theories

Study $\underline{\Delta}$ using the theory of **monads with arities**.

- Generalised nerve constructions
- Algebras as presheaves with (Segal) conditions
- Correspondence: monads \leftrightarrow algebraic theories

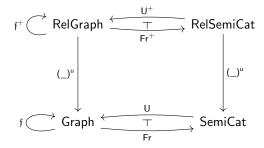
We rather work with a sufficient property:

Theorem (Berger, Melliès, and Weber 2012)

Suppose T is a strongly cartesian monad (cartesian + local right adjoint) on a (finitely complete) category \mathcal{E} with a dense generator, then T is a monad with arities.

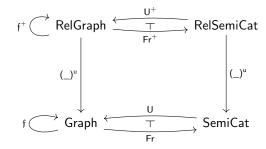
The free relative semicategory monad f^+

Using forgetful functors we can construct the following diagram:



The free relative semicategory monad f^+

Using forgetful functors we can construct the following diagram:



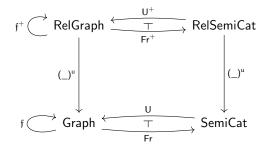
• $\mathfrak{f} G = \mathsf{paths} [n] \to G$ and concatenation

Proposition

The free semicategory monad \mathfrak{f} : Graph \rightarrow Graph is strongly cartesian.

The free relative semicategory monad f^+

Using forgetful functors we can construct the following diagram:



•
$$\mathfrak{f} G = \text{paths } [n] \to G$$
 and concatenation
• $\mathfrak{f}^+(G^+ \hookrightarrow G) = \mathfrak{f} G^+ \hookrightarrow \mathfrak{f} G$

Proposition

The free semicategory monad $\mathfrak{f}:\mathsf{Graph}\to\mathsf{Graph}$ is strongly cartesian.

Proposition

The free relative semicategory monad $\mathfrak{f}^+:\mathsf{RelGraph}\to\mathsf{RelGraph}$ is strongly cartesian.

T. de Jong, N. Kraus, S. Paoli, S. Pradal

Results

Theorem (Arities $\underline{\Delta}_0$ and the associated theory $\underline{\Delta}$)

- The category of arities $\underline{\Delta}_0$ can be identified with the subcategory of $\underline{\Delta}$ consisting of relative semiordinals and **distance-preserving morphisms**.
- The associated theory is the category of free f⁺-algebras over <u>∆</u>₀, that is the category <u>∆</u> of relative semiordinals.

Results

Theorem (Arities $\underline{\Delta}_0$ and the associated theory $\underline{\Delta}$)

- The category of arities $\underline{\Delta}_0$ can be identified with the subcategory of $\underline{\Delta}$ consisting of relative semiordinals and **distance-preserving morphisms**.
- The associated theory is the category of free f⁺-algebras over <u>∆</u>₀, that is the category <u>∆</u> of relative semiordinals.

Theorem (Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$)

The category $\underline{\Delta}$ has an **active-inert** factorisation system ($\underline{\Delta}_a, \underline{\Delta}_0$) consisting of distance-preserving and endpoint-preserving morphisms.

Results

Theorem (Arities $\underline{\Delta}_0$ and the associated theory $\underline{\Delta}$)

- The category of arities <u>Δ</u>₀ can be identified with the subcategory of <u>Δ</u> consisting of relative semiordinals and distance-preserving morphisms.
- The associated theory is the category of free f⁺-algebras over <u>∆</u>₀, that is the category <u>∆</u> of relative semiordinals.

Theorem (Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$)

The category $\underline{\Delta}$ has an **active-inert** factorisation system ($\underline{\Delta}_a, \underline{\Delta}_0$) consisting of distance-preserving and endpoint-preserving morphisms.

Theorem (Nerve theorem for $\underline{\mathcal{N}}$)

The nerve functor $\underline{\mathcal{N}}$: RelSemiCat $\rightarrow \underline{\widehat{\Delta}}$ is **fully faithful**, and the essential image is spanned by the presheaves whose restriction along $\underline{\Delta}_0 \hookrightarrow \underline{\Delta}$ belongs to the essential image of $\underline{\mathcal{N}}$: RelGraph $\rightarrow \underline{\widehat{\Delta}_0}$.

Contribution

- ${\scriptstyle \bullet}\,$ Nerve theorem for $\underline{\Delta}\,$
- Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$
- Generalised Segal conditions

Contribution

- Nerve theorem for $\underline{\Delta}$
- Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$
- Generalised Segal conditions
- ${\scriptstyle \bullet}$ The category $\underline{\Delta}$ enjoys many similar properties as Δ
- In particular, $\underline{\Delta}$ is for relative semicategories what Δ is for categories

Contribution

- Nerve theorem for $\underline{\Delta}$
- Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$
- Generalised Segal conditions
- ${\scriptstyle \bullet}$ The category $\underline{\Delta}$ enjoys many similar properties as Δ
- In particular, $\underline{\Delta}$ is for relative semicategories what Δ is for categories

Work in progress

- Δ as a hypermoment category (in the sense of Berger (2022))
- <u>
 <u>
 </u>
 <u>
 </u>
 <u>
 </u>
 -spaces
 </u>

Contribution

- Nerve theorem for $\underline{\Delta}$
- Active-inert factorisation system $(\underline{\Delta}_a, \underline{\Delta}_0)$
- Generalised Segal conditions
- ${\scriptstyle \bullet}$ The category $\underline{\Delta}$ enjoys many similar properties as Δ
- In particular, $\underline{\Delta}$ is for relative semicategories what Δ is for categories

Work in progress

- Δ as a hypermoment category (in the sense of Berger (2022))
- <u>
 △</u>-spaces

For more see: https://www.stiephenpradal.com

Thank you!

Berger, Clemens (2022). "Moment Categories and Operads". In: Theory and Application of Categories 38.9. URL: http://www.tac.mta.ca/tac/volumes/38/39/38-39.pdf. Berger, Clemens, Paul-André Melliès, and Mark Weber (2012). "Monads with Arities and Their Associated Theories". In: Journal of Pure and Applied Algebra 216.8. DOI: 10.1016/j.jpaa.2012.02.039. Kock, Joachim (2006). "Weak Identity Arrows in Higher Categories". In: International Mathematics Research Papers. DOI: 10.1155/IMRP/2006/69163. Kraus, Nicolai and Christian Sattler (2017). Space-Valued Diagrams, Type-Theoretically (Extended Abstract). DOI: 10.48550/arXiv.1704.04543. Paoli, Simona (2024). Weakly Globular Double Categories and Weak Units. DOI: