Sketchable infinity categories

David Martínez-Carpena

Carles Casacuberta Javier J. Gutiérrez

Categorical Logic and Higher Categories

Manchester, 16-19 December 2024

A sketch Σ is a triple (A, L, C) of a small category A, a set L of cones and a set C of cocones. If $C = \emptyset$, Σ is a **limit sketch**.

Example. Let A be the small category generated by the square α :

$$\begin{array}{ccc} A \\ 0 & \longrightarrow & 1 \\ \downarrow & \alpha & \downarrow \\ 2 & \longrightarrow & 3 \end{array}$$

A sketch Σ is a triple (A, L, C) of a small category A, a set L of cones and a set C of cocones. If $C = \emptyset$, Σ is a **limit sketch**.

Example. Let A be the small category generated by the square α :

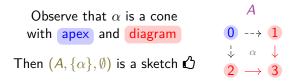
Observe that α is a coneAwith apex and diagram $0 \rightarrow 1$ Then $(A, \{\alpha\}, \emptyset)$ is a sketch $2 \rightarrow 3$

A sketch Σ is a triple (A, L, C) of a small category A, a set L of cones and a set C of cocones. If $C = \emptyset$, Σ is a **limit sketch**.

A **model** of a sketch in a category K is a functor $F : A \to K$ which sends cones of L to limits and cocones of C to colimits.

 $\mathsf{Mod}(\Sigma, K) := \infty \text{-category of models of } \Sigma \text{ in } K$ $\mathsf{Mod}(\Sigma) := \infty \text{-category of models of } \Sigma \text{ in } \mathbf{Set}$

Example. Let A be the small category generated by the square α :



A sketch Σ is a triple (A, L, C) of a small category A, a set L of cones and a set C of cocones. If $C = \emptyset$, Σ is a **limit sketch**.

A **model** of a sketch in a category K is a functor $F : A \to K$ which sends cones of L to limits and cocones of C to colimits.

 $\mathsf{Mod}(\Sigma, K) := \infty \text{-category of models of } \Sigma \text{ in } K$ $\mathsf{Mod}(\Sigma) := \infty \text{-category of models of } \Sigma \text{ in } \mathbf{Set}$

Example. Let A be the small category generated by the square α :

A model **F** of the sketch $(A, \{\alpha\}, \emptyset)$ is a pullback of sets \mathfrak{O}

Representation theorem

Representation theorem

Theorem (Gabriel and Ulmer 1971)

A category is presentable if and only if it is limit-sketchable.

Theorem (Lair 1981)

A category is accessible if and only if it is sketchable.

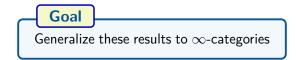
Representation theorem

Theorem (Gabriel and Ulmer 1971)

A category is presentable if and only if it is limit-sketchable.

Theorem (Lair 1981)

A category is accessible if and only if it is sketchable.



Higher sketches (Joyal 2008)

A sketch Σ is a triple $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ of a small ∞ -category \mathcal{A} , a set \mathcal{L} of cones and a set \mathcal{C} of cocones. If $\mathcal{C} = \emptyset$, Σ is a **limit sketch**.

A **model** of a sketch in a category \mathcal{K} is a functor $F : \mathcal{A} \to \mathcal{K}$ which sends cones of L to limits and cocones of C to colimits.

$$\begin{split} \mathsf{Mod}(\Sigma,\mathcal{K}) &\coloneqq \infty\text{-category of models of } \Sigma \text{ in } \mathcal{K} \\ \mathsf{Mod}(\Sigma) &\coloneqq \infty\text{-category of models of } \Sigma \text{ in } \textbf{Spaces} \end{split}$$

Higher sketches (Joyal 2008)

A sketch Σ is a triple (\mathcal{A}, L, C) of a small ∞ -category \mathcal{A} , a set L of cones and a set C of cocones. If $C = \emptyset$, Σ is a **limit sketch**.

A **model** of a sketch in a category \mathcal{K} is a functor $F : \mathcal{A} \to \mathcal{K}$ which sends cones of L to limits and cocones of C to colimits.

$$\begin{split} \mathsf{Mod}(\Sigma,\mathcal{K}) &\coloneqq \infty\text{-category of models of } \Sigma \text{ in } \mathcal{K} \\ \mathsf{Mod}(\Sigma) &\coloneqq \infty\text{-category of models of } \Sigma \text{ in } \textbf{Spaces} \end{split}$$

Example. Let \mathcal{A} be the nerve of the category generated by α :

A model **F** of the sketch $(\mathcal{A}, \{\alpha\}, \emptyset)$ is a homotopy pullback \mathfrak{O}

> Algebraic theories (Rosicky 2007): Monoid objects (A_∞-spaces), commutative monoid objects (E_∞-spaces), group objects (∞-groups), R-modules, ...

- > Algebraic theories (Rosicky 2007): Monoid objects $(A_{\infty}$ -spaces), commutative monoid objects $(E_{\infty}$ -spaces), group objects (∞ -groups), R-modules, ...
- > Algebraic patterns (Chu and Haugseng 2021): Category objects (Segal spaces), operad objects (Segal dendroidal spaces), ...

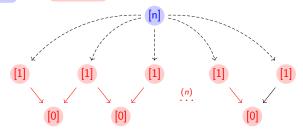
- > Algebraic theories (Rosicky 2007): Monoid objects $(A_{\infty}$ -spaces), commutative monoid objects $(E_{\infty}$ -spaces), group objects (∞ -groups), R-modules, ...
- > Algebraic patterns (Chu and Haugseng 2021): Category objects (Segal spaces), operad objects (Segal dendroidal spaces), ...
- > Spectrum object (Spectra)

- > Algebraic theories (Rosicky 2007): Monoid objects $(A_{\infty}$ -spaces), commutative monoid objects $(E_{\infty}$ -spaces), group objects (∞ -groups), R-modules, ...
- > Algebraic patterns (Chu and Haugseng 2021): Category objects (Segal spaces), operad objects (Segal dendroidal spaces), ...
- > Spectrum object (Spectra)
- > Univalent category objects (Complete Segal spaces) and univalent operad objects (Complete Segal dendroidal spaces)

- > Algebraic theories (Rosicky 2007): Monoid objects $(A_{\infty}$ -spaces), commutative monoid objects $(E_{\infty}$ -spaces), group objects (∞ -groups), R-modules, ...
- > Algebraic patterns (Chu and Haugseng 2021): Category objects (Segal spaces), operad objects (Segal dendroidal spaces), ...
- > Spectrum object (Spectra)
- > Univalent category objects (Complete Segal spaces) and univalent operad objects (Complete Segal dendroidal spaces)
- > ∞ -sheaves \simeq hypercomplete ∞ -topos

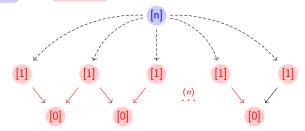
Examples: Category objects

Let \mathcal{K} be a complete ∞ -category, and α_n be the cone over Δ^{op} with apex and diagram for all $n \in \mathbb{N}$:



Examples: Category objects

Let \mathcal{K} be a complete ∞ -category, and α_n be the cone over Δ^{op} with apex and diagram for all $n \in \mathbb{N}$:

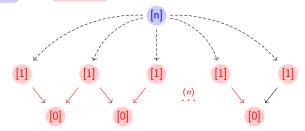


Then $\Sigma = (\Delta^{op}, \{\alpha_n \mid n \in \mathbb{N}\})$ is a limit sketch, and a model $F : \Delta^{op} \to \mathcal{K}$ is a simplicial object in \mathcal{K} such that

$$F_n \xrightarrow{\sim} F_1 \times_{F_0} F_1 \times_{F_0} \stackrel{(n)}{\cdots} \times_{F_0} F_1.$$
 (Segal condition)

Examples: Category objects

Let \mathcal{K} be a complete ∞ -category, and α_n be the cone over Δ^{op} with apex and diagram for all $n \in \mathbb{N}$:

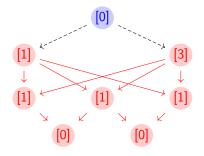


Then $\Sigma = (\Delta^{op}, \{\alpha_n \mid n \in \mathbb{N}\})$ is a limit sketch, and a model $F : \Delta^{op} \to \mathcal{K}$ is a simplicial object in \mathcal{K} such that

$$F_n \xrightarrow{\sim} F_1 \times_{F_0} F_1 \times_{F_0} \stackrel{(n)}{\cdots} \times_{F_0} F_1.$$
 (Segal condition)
 $\operatorname{Mod}(\Sigma, \mathcal{K}) \simeq \operatorname{Category \ objects \ on \ \mathcal{K}}$
 $\operatorname{Mod}(\Sigma) \simeq \operatorname{Segal \ spaces}$

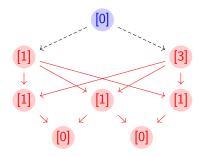
Examples: Univalent category objects

Let \mathcal{L}_S be the set of cones of the previous example, and β be the cone over Δ^{op} with apex and diagram :

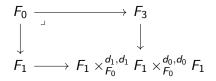


Examples: Univalent category objects

Let \mathcal{L}_S be the set of cones of the previous example, and β be the cone over Δ^{op} with apex and diagram :

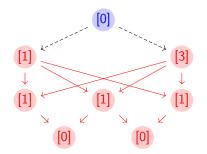


Then $\Sigma = (\Delta^{op}, \mathcal{L}_S \cup \{\beta\})$ is a limit sketch, and a model $F : \mathcal{A} \to \mathcal{K}$ is a category object in \mathcal{K} such that

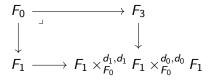


Examples: Univalent category objects

Let \mathcal{L}_S be the set of cones of the previous example, and β be the cone over Δ^{op} with apex and diagram :



Then $\Sigma = (\Delta^{op}, \mathcal{L}_S \cup \{\beta\})$ is a limit sketch, and a model $F : \mathcal{A} \to \mathcal{K}$ is a category object in \mathcal{K} such that



 $Mod(\Sigma, \mathcal{K}) \simeq$ Univalent category objects on \mathcal{K} $Mod(\Sigma) \simeq$ Complete Segal spaces

Higher representation theorem

Theorem. An ∞ -category is:

- (a) presentable if and only if it is limit-sketchable,
- (b) and accessible if and only if it is sketchable.

Higher representation theorem

Theorem. An ∞ -category is:

- (a) presentable if and only if it is limit-sketchable,
- (b) and accessible if and only if it is sketchable.
 - Presentability definitions of Joyal and Lurie are equivalent.
 - \heartsuit Can be used to prove that many ∞ -categories are presentable.
 - Solution The result can be extended to models of sketches over any presentable ∞-category.
 - O Example of a sketch with ∞-category of models that is accessible but neither presentable nor 1-categorical.

Thank you for listening!

- Joyal, André (2008). The Theory of Quasi-Categories and its Applications. Barcelona: Lectures at CRM.
- Rosicky, Jiří (2007). "On homotopy varieties". Advances in Mathematics 214.2.
- Chu, Hongyi and Rune Haugseng (2021). "Homotopy-coherent algebra via Segal conditions". Advances in Mathematics 385.

Sketchable infinity categories

David Martínez-Carpena

Carles Casacuberta Javier J. Gutiérrez

Categorical Logic and Higher Categories

Manchester, 16-19 December 2024

