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regular monos?
[AHTO6] & [Hu94]: If A has pushouts or if A has small products:
yes.
[AHT96]: In general: no. There is a small w-acc. cat. with an w-pure
epi (which is not iso).

e goal: If A ~ Coh(C, Set) is A\-acc. then A\-pure = strict mono
(=joint equalizer of a set of pairs).

@ also true: If there is a proper class of strongly compact cardinals, then
for any A-acc. A there is = A, s.t. p-pure = strict mono.

The proofs are written down in: arxiv.org/abs/2407.13448
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Theorem (Lurie)

C is coherent with fin. disjoint coproducts. Then every C — Set regular

functor factors uniquely as C M, Sh(B) LR Set, where M is coherent and
B is a Boolean-alg. with the finite union topology.
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C is coherent with fin. disjoint coproducts. Then every C — Set regular

functor factors uniquely as C M, Sh(B) LR Set, where M is coherent and
B is a Boolean-alg. with the finite union topology.

Corollary

C is coherent with fin. disjoint coproducts. Then every C — Set regular
functor admits a mono-cartesian map to a product of coherent functors.

proof:

Sh(B) =—— Sh(B)

C = J* U g Ji = Set

<m Sh(2') = Set! = Sh(2') = Set! /r
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Coh(C, Set) — Lex(C, Set) = Pro(C)°P

© )-pure maps go to mono-cartesian nat. tr.
@ In Lex(C, Set) mono-cartesian = regular mono.
© So now we have an equalizer

N_——=ZF

o
M :

enough: F has a monomorphism to a product of coherent functors.

Q Jex — reg: Pro-completion of a reg. cat. + small object argument
© reg — [] coh: by Lurie's thm.
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