Enriched duality in double categories

Christina Vasilakopoulou

National Technical University of Athens, Greece

Workshop on Categorical Logic and Higher Categories

University of Manchester

1. Background

1. Background

- 1. Background
- 2. Enriched duality in monoidal double categories

- 1. Background
- 2. Enriched duality in monoidal double categories
- 3. Oplax monoidal double structure

- Background
- 2. Enriched duality in monoidal double categories
- Oplax monoidal double structure
- Further directions

Suppose $(\mathcal{V}, \otimes, I)$ is monoidal category.

Suppose $(\mathcal{V}, \otimes, I)$ is monoidal category.

▶ A monoid is an object A together with maps μ : $A \otimes A \to A$ and η : $I \to A$ which are associative and unital

Suppose $(\mathcal{V}, \otimes, I)$ is monoidal category.

▶ A monoid is an object A together with maps μ : $A \otimes A \to A$ and η : $I \to A$ which are associative and unital

▶ Dually, a *comonoid* is an object C together with maps $\delta \colon C \to C \otimes C$ and $\epsilon \colon C \to I$ which are coassociative and counital.

Suppose $(\mathcal{V}, \otimes, I)$ is monoidal category.

▶ A monoid is an object A together with maps μ : $A \otimes A \to A$ and η : $I \to A$ which are associative and unital

- ▶ Dually, a *comonoid* is an object C together with maps $\delta \colon C \to C \otimes C$ and $\epsilon \colon C \to I$ which are coassociative and counital.
- * These form categories Mon and Comon, with maps preserving structure.

Suppose $(\mathcal{V}, \otimes, I)$ is monoidal category.

ightharpoonup A monoid is an object A together with maps $\mu \colon A \otimes A \to A$ and $\eta: I \to A$ which are associative and unital

- ightharpoonup Dually, a *comonoid* is an object C together with maps $\delta\colon C o C\otimes C$ and $\epsilon \colon C \to I$ which are coassociative and counital.
- * These form categories Mon and Comon, with maps preserving structure.

When $(\mathcal{V}, \otimes, I, \sigma)$ is symmetric, Mon and Comon are monoidal

Suppose $(\mathcal{V}, \otimes, I)$ is monoidal category.

▶ A monoid is an object A together with maps μ : $A \otimes A \to A$ and η : $I \to A$ which are associative and unital

- ▶ Dually, a *comonoid* is an object C together with maps $\delta \colon C \to C \otimes C$ and $\epsilon \colon C \to I$ which are coassociative and counital.
- \star These form categories Mon and Comon, with maps preserving structure.

When $(\mathcal{V}, \otimes, \mathcal{I}, \sigma)$ is symmetric, Mon and Comon are monoidal with

$$C \otimes D$$

$$C \otimes D \otimes C \otimes D$$

Suppose $(\mathcal{V}, \otimes, I)$ is monoidal category.

ightharpoonup A monoid is an object A together with maps $\mu \colon A \otimes A \to A$ and $\eta: I \to A$ which are associative and unital

- ightharpoonup Dually, a *comonoid* is an object C together with maps $\delta\colon C o C\otimes C$ and $\epsilon \colon C \to I$ which are coassociative and counital.
- * These form categories Mon and Comon, with maps preserving structure.

When $(\mathcal{V}, \otimes, I, \sigma)$ is symmetric, Mon and Comon are monoidal with

$$C\otimes D\xrightarrow{\delta\otimes\delta}C\otimes C\otimes D\otimes D\xrightarrow{1\otimes\sigma\otimes1}C\otimes D\otimes C\otimes D$$

 $\blacksquare \text{ If } \mathcal{V} \text{ is monoidal closed, induced } [\text{-},\text{-}] \colon \mathsf{Comon}(\mathcal{V})^{\mathrm{op}} \times \mathsf{Mon}(\mathcal{V}) \to \mathsf{Mon}(\mathcal{V})$

■ If $\mathcal V$ is monoidal closed, induced [-,-]: Comon $(\mathcal V)^{\mathrm{op}} \times \mathrm{Mon}(\mathcal V) \to \mathrm{Mon}(\mathcal V)$ makes [C,A] into a monoid via *convolution*

$$[C,A]\otimes[C,A]\otimes C$$

■ If $\mathcal V$ is monoidal closed, induced [-,-]: Comon $(\mathcal V)^{\mathrm{op}} \times \mathrm{Mon}(\mathcal V) \to \mathrm{Mon}(\mathcal V)$ makes [C,A] into a monoid via *convolution*

$$[C,A]\otimes[C,A]\otimes C \xrightarrow{1\otimes\delta} [C,A]\otimes[C,A]\otimes C\otimes C \xrightarrow{1\otimes\sigma\otimes1} [C,A]\otimes C\otimes[C,A]\otimes C$$

$$\downarrow^{\text{ev}\otimes\text{ev}}$$

$$A\otimes A$$

$$\downarrow^{\mu}$$

■ If \mathcal{V} is monoidal closed, induced [-,-]: Comon $(\mathcal{V})^{\mathrm{op}} \times \mathrm{Mon}(\mathcal{V}) \rightarrow \mathrm{Mon}(\mathcal{V})$ makes [C,A] into a monoid via *convolution*

$$[C,A] \otimes [C,A] \otimes C \xrightarrow{1 \otimes \delta} [C,A] \otimes [C,A] \otimes C \otimes C \xrightarrow{1 \otimes \sigma \otimes 1} [C,A] \otimes C \otimes [C,A] \otimes C$$

$$\downarrow_{\text{ev} \otimes \text{ev}}$$

$$(f * g)(c) = \sum_{(c)} f(c_1)g(c_2) \qquad A \otimes A$$

$$\downarrow \mu$$

■ If \mathcal{V} is monoidal closed, induced [-,-]: Comon $(\mathcal{V})^{\mathrm{op}} \times \mathrm{Mon}(\mathcal{V}) \rightarrow \mathrm{Mon}(\mathcal{V})$ makes [C, A] into a monoid via convolution

* In Vect_k, linear dual $C^* = \operatorname{Hom}_k(C, k)$ for a k-coalgebra is a k-algebra

■ If V is monoidal closed, induced [-,-]: Comon $(V)^{op} \times Mon(V) \rightarrow Mon(V)$ makes [C, A] into a monoid via convolution

$$[C,A] \otimes [C,A] \otimes C \xrightarrow{1 \otimes \delta} [C,A] \otimes [C,A] \otimes C \otimes C \xrightarrow{1 \otimes \sigma \otimes 1} [C,A] \otimes C \otimes [C,A] \otimes C \xrightarrow{\downarrow \text{ev} \otimes \text{ev}} A \otimes A \downarrow \mu$$

$$\downarrow \mu$$

$$A$$

* In Vect_k, linear dual $C^* = \operatorname{Hom}_k(C, k)$ for a k-coalgebra is a k-algebra – while A^* for a k-algebra is a k-coalgebra only if it is finite dimensional.

■ If \mathcal{V} is monoidal closed, induced [-,-]: Comon $(\mathcal{V})^{\mathrm{op}} \times \mathrm{Mon}(\mathcal{V}) \rightarrow \mathrm{Mon}(\mathcal{V})$ makes [C, A] into a monoid via convolution

$$[C,A] \otimes [C,A] \otimes C \xrightarrow{1 \otimes \delta} [C,A] \otimes [C,A] \otimes C \otimes C \xrightarrow{1 \otimes \sigma \otimes 1} [C,A] \otimes C \otimes [C,A] \otimes C \xrightarrow{\downarrow \text{ev} \otimes \text{ev}} A \otimes A \downarrow \mu$$

* In Vect_k, linear dual $C^* = \operatorname{Hom}_k(C, k)$ for a k-coalgebra is a k-algebra – while A^* for a k-algebra is a k-coalgebra only if it is finite dimensional.

Sweedler dual 'fixes' that: $A^o = \{ f \in A^* \mid kerf \text{ contains cofinite ideal} \}$

■ If \mathcal{V} is monoidal closed, induced [-,-]: Comon $(\mathcal{V})^{\mathrm{op}} \times \mathrm{Mon}(\mathcal{V}) \rightarrow \mathrm{Mon}(\mathcal{V})$ makes [C, A] into a monoid via convolution

$$[C,A] \otimes [C,A] \otimes C \xrightarrow{1 \otimes \delta} [C,A] \otimes [C,A] \otimes C \otimes C \xrightarrow{1 \otimes \sigma \otimes 1} [C,A] \otimes C \otimes [C,A] \otimes C \xrightarrow{\downarrow \text{ev} \otimes \text{ev}} A \otimes A \downarrow \mu$$

$$\downarrow \mu$$

$$\downarrow \mu$$

$$\downarrow \mu$$

* In Vect_k, linear dual $C^* = \operatorname{Hom}_k(C, k)$ for a k-coalgebra is a k-algebra – while A^* for a k-algebra is a k-coalgebra only if it is finite dimensional.

Sweedler dual 'fixes' that: $A^o = \{ f \in A^* \mid kerf \text{ contains cofinite ideal} \}$ is a k-coalgebra, and $Alg(A, C^*) \cong Coalg(C, A^o)$.

■ If \mathcal{V} is monoidal closed, induced [-,-]: Comon $(\mathcal{V})^{\mathrm{op}} \times \mathrm{Mon}(\mathcal{V}) \rightarrow \mathrm{Mon}(\mathcal{V})$ makes [C,A] into a monoid via *convolution*

* In Vect_k, linear dual $C^* = \operatorname{Hom}_k(C, k)$ for a k-coalgebra is a k-algebra – while A^* for a k-algebra is a k-coalgebra only if it is finite dimensional.

Sweedler dual 'fixes' that: $A^o = \{ f \in A^* \mid kerf \text{ contains cofinite ideal} \}$ is a k-coalgebra, and $Alg(A, C^*) \cong Coalg(C, A^o)$.

More generally, there exists universal measuring k-coalgebra with $Alg(A, Hom_k(C, B)) \cong Coalg(C, P(A, B)) - so A^o = P(A, k)$.

Moving to general context of symmetric monoidal closed categories

Suppose $\mathcal V$ is a symmetric monoidal closed and locally presentable category. There is a parameterized adjunction between

```
[-,-]: Comon<sup>op</sup> × Mon \rightarrow Mon convolution
```

P(-,-): Mon^{op} × Mon \rightarrow Comon universal measuring

Suppose $\mathcal V$ is a symmetric monoidal closed and locally presentable category. There is a parameterized adjunction between

```
[-,-]: Comon<sup>op</sup> × Mon \rightarrow Mon convolution P(-,-): Mon<sup>op</sup> × Mon \rightarrow Comon universal measuring
```

• In Set, P(A, B) is Mon(A, B)

Suppose $\mathcal V$ is a symmetric monoidal closed and locally presentable category. There is a parameterized adjunction between

```
[-,-]: Comon<sup>op</sup> × Mon \rightarrow Mon convolution P(-,-): Mon<sup>op</sup> × Mon \rightarrow Comon universal measuring
```

• In Set, P(A, B) is Mon(A, B); in $Vect_k$, it contains k-algebra maps as grouplike elements

Suppose \mathcal{V} is a symmetric monoidal closed and locally presentable category. There is a parameterized adjunction between

```
[-,-]: Comon<sup>op</sup> × Mon \rightarrow Mon convolution
P(-,-): Mon<sup>op</sup> × Mon \rightarrow Comon universal measuring
```

• In Set, P(A, B) is Mon(A, B); in $Vect_k$, it contains k-algebra maps as grouplike elements; in $dgVect_k$, it relates to bar-cobar adjunction.

Suppose $\mathcal V$ is a symmetric monoidal closed and locally presentable category. There is a parameterized adjunction between

```
[-,-]: Comon<sup>op</sup> × Mon \rightarrow Mon convolution

P(-,-): Mon<sup>op</sup> × Mon \rightarrow Comon universal measuring
```

- In Set, P(A, B) is Mon(A, B); in $Vect_k$, it contains k-algebra maps as grouplike elements; in $dgVect_k$, it relates to bar-cobar adjunction.
- * Convolution [-,-] is an action of the monoidal Comon on Mon.

Suppose $\mathcal V$ is a symmetric monoidal closed and locally presentable category. There is a parameterized adjunction between

[-,-]: Comon^{op} × Mon
$$\rightarrow$$
 Mon convolution $P(-,-)$: Mon^{op} × Mon \rightarrow Comon universal measuring

- In Set, P(A, B) is Mon(A, B); in $Vect_k$, it contains k-algebra maps as grouplike elements; in $dgVect_k$, it relates to bar-cobar adjunction.
- * Convolution [-,-] is an action of the monoidal Comon (op) on Mon.

An adjoint of an action $\bullet \colon \mathcal{V} \times \mathcal{C} \to \mathcal{C}$ gives rise to a \mathcal{V} -enriched structure on \mathcal{C} .

Suppose ${\cal V}$ is a symmetric monoidal closed and locally presentable category. There is a parameterized adjunction between

[-,-]: Comon^{op}
$$\times$$
 Mon \rightarrow Mon convolution $P(-,-)$: Mon^{op} \times Mon \rightarrow Comon universal measuring

- In Set, P(A, B) is Mon(A, B); in $Vect_k$, it contains k-algebra maps as grouplike elements; in $dgVect_k$, it relates to bar-cobar adjunction.
- * Convolution [-,-] is an action of the monoidal Comon on Mon.

An adjoint of an action $\bullet \colon \mathcal{V} \times \mathcal{C} \to \mathcal{C}$ gives rise to a \mathcal{V} -enriched structure on \mathcal{C} .

The category Mon is enriched in the monoidal Comon.

From monoidal to double categories

From monoidal to double categories

One to many objects: generalize from monoids in V, to V-categories.

From monoidal to double categories

One to many objects: generalize from monoids in \mathcal{V} , to \mathcal{V} -categories.

What about comonoids?

One to many objects: generalize from monoids in \mathcal{V} , to \mathcal{V} -categories.

What about comonoids? Opcategories= $\mathcal{V}^{\mathrm{op}}$ -categories not as convenient, formally...identify common framework!

One to many objects: generalize from monoids in V, to V-categories.

What about comonoids? Opcategories= $\mathcal{V}^{\mathrm{op}}$ -categories not as convenient, formally...identify common framework!

ightharpoonup A double category $\mathbb D$

One to many objects: generalize from monoids in V, to V-categories.

What about comonoids? Opcategories= $\mathcal{V}^{\mathrm{op}}$ -categories not as convenient, formally...identify common framework!

▶ A double category \mathbb{D} has object category \mathbb{D}_0 (0-cells & vertical 1-cells)

One to many objects: generalize from monoids in V, to V-categories.

What about comonoids? Opcategories= $\mathcal{V}^{\mathrm{op}}$ -categories not as convenient, formally. . . identify common framework!

▶ A double category \mathbb{D} has object category \mathbb{D}_0 (0-cells & vertical 1-cells), arrow category \mathbb{D}_1 (horizontal 1-cells & 2-maps)

One to many objects: generalize from monoids in V, to V-categories.

What about comonoids? Opcategories= \mathcal{V}^{op} -categories not as convenient, formally...identify common framework!

 \triangleright A double category \mathbb{D} has object category \mathbb{D}_0 (0-cells & vertical 1-cells), arrow category \mathbb{D}_1 (horizontal 1-cells & 2-maps)

$$\begin{array}{ccc}
X & \xrightarrow{A} & Y \\
f \downarrow & \psi \alpha & \downarrow g \\
Z & \xrightarrow{B} & W
\end{array}$$

One to many objects: generalize from monoids in V, to V-categories.

What about comonoids? Opcategories= $\mathcal{V}^{\mathrm{op}}$ -categories not as convenient, formally. . . identify common framework!

ightharpoonup A double category \mathbb{D}_0 has object category \mathbb{D}_0 (0-cells & vertical 1-cells), arrow category \mathbb{D}_1 (horizontal 1-cells & 2-maps)

$$\begin{array}{ccc}
X & \xrightarrow{A} & Y \\
f \downarrow & \psi \alpha & \downarrow g \\
Z & \xrightarrow{B} & W
\end{array}$$

and $\mathbb{D}_0 \xrightarrow{\mathbf{1}} \mathbb{D}_1$, $\mathbb{D}_1 \overset{\mathfrak{s}}{\underset{t}{\Longrightarrow}} \mathbb{D}_0$, $\mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \overset{\circ}{\to} \mathbb{D}_1 + \text{coherent isos.}$

One to many objects: generalize from monoids in V, to V-categories.

What about comonoids? Opcategories= $\mathcal{V}^{\mathrm{op}}$ -categories not as convenient, formally. . . identify common framework!

ightharpoonup A double category \mathbb{D}_0 has object category \mathbb{D}_0 (0-cells & vertical 1-cells), arrow category \mathbb{D}_1 (horizontal 1-cells & 2-maps)

$$\begin{array}{ccc}
X & \xrightarrow{A} & Y \\
f \downarrow & \psi \alpha & \downarrow g \\
Z & \xrightarrow{B} & W
\end{array}$$

and $\mathbb{D}_0 \xrightarrow{\mathbf{1}} \mathbb{D}_1$, $\mathbb{D}_1 \overset{\mathfrak{s}}{\underset{t}{\Longrightarrow}} \mathbb{D}_0$, $\mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \overset{\circ}{\to} \mathbb{D}_1$ + coherent isos.

0-cells, horizontal 1-cells, globular 2-maps make horizontal bicategory $\mathcal{H}(\mathbb{D})$.

▶ A monad in a double category \mathbb{D} is $A: X \longrightarrow X$

▶ A monad in a double category \mathbb{D} is $A: X \longrightarrow X$ with associative, unital

▶ A monad in a double category \mathbb{D} is $A: X \longrightarrow X$ with associative, unital

Dually, comonad $C: X \longrightarrow X$. These form categories $\mathsf{Mnd}(\mathbb{D})$ & $\mathsf{Cmd}(\mathbb{D})$.

ightharpoonup A monad in a double category $\mathbb D$ is $A\colon X \to X$ with associative, unital

Dually, comonad $C: X \longrightarrow X$. These form categories $\mathsf{Mnd}(\mathbb{D})$ & $\mathsf{Cmd}(\mathbb{D})$.

▶ A monad in a double category \mathbb{D} is $A: X \longrightarrow X$ with associative, unital

Dually, comonad $C: X \longrightarrow X$. These form categories $\mathsf{Mnd}(\mathbb{D})$ & $\mathsf{Cmd}(\mathbb{D})$.

* Morphisms are different than those for (co)monads in bicategories.

For $\mathbb{D} = \mathcal{V}\text{-}\mathbb{M}$ at of sets, functions and $\mathcal{V}\text{-}$ matrices

ightharpoonup A monad in a double category $\mathbb D$ is $A\colon X \longrightarrow X$ with associative, unital

Dually, comonad $C: X \longrightarrow X$. These form categories $Mnd(\mathbb{D}) \& Cmd(\mathbb{D})$.

For
$$\mathbb{D} = \mathcal{V}$$
-Mat of sets, functions and \mathcal{V} -matrices $S \colon X \to Y$ i.e. $\{S(x,y)\} \in \mathcal{V}$

▶ A monad in a double category \mathbb{D} is $A: X \longrightarrow X$ with associative, unital

Dually, comonad $C: X \longrightarrow X$. These form categories $\mathsf{Mnd}(\mathbb{D})$ & $\mathsf{Cmd}(\mathbb{D})$.

For
$$\mathbb{D} = \mathcal{V}$$
-Mat of sets, functions and \mathcal{V} -matrices $S \colon X \to Y$ i.e. $\{S(x,y)\} \in \mathcal{V}$ with $(S \circ T)(x,z) = \sum_y T(x,y) \otimes S(y,z)$

ightharpoonup A monad in a double category $\mathbb D$ is $A\colon X \longrightarrow X$ with associative, unital

Dually, comonad $C: X \longrightarrow X$. These form categories $\mathsf{Mnd}(\mathbb{D})$ & $\mathsf{Cmd}(\mathbb{D})$.

For
$$\mathbb{D} = \mathcal{V}$$
-Mat of sets, functions and \mathcal{V} -matrices $S \colon X \to Y$ i.e. $\{S(x,y)\} \in \mathcal{V}$ with $(S \circ T)(x,z) = \sum_y T(x,y) \otimes S(y,z)$, $\mathsf{Mnd}(\mathcal{V}$ -Mat $) = \mathcal{V}$ -Cat

ightharpoonup A monad in a double category $\mathbb D$ is $A\colon X \dashrightarrow X$ with associative, unital

Dually, comonad $C: X \longrightarrow X$. These form categories $\mathsf{Mnd}(\mathbb{D})$ & $\mathsf{Cmd}(\mathbb{D})$.

For
$$\mathbb{D} = \mathcal{V}$$
-Mat of sets, functions and \mathcal{V} -matrices $S \colon X \to Y$ i.e. $\{S(x,y)\} \in \mathcal{V}$ with $(S \circ T)(x,z) = \sum_y T(x,y) \otimes S(y,z)$, $\mathsf{Mnd}(\mathcal{V}\text{-Mat}) = \mathcal{V}\text{-Cat}$ and $\mathsf{Cmd}(\mathcal{V}\text{-Mat}) = \mathcal{V}\text{-Cocat}$.

▶ A monad in a double category \mathbb{D} is $A: X \longrightarrow X$ with associative, unital

Dually, comonad $C: X \longrightarrow X$. These form categories $\mathsf{Mnd}(\mathbb{D})$ & $\mathsf{Cmd}(\mathbb{D})$.

* Morphisms are different than those for (co)monads in bicategories.

For
$$\mathbb{D} = \mathcal{V}$$
-Mat of sets, functions and \mathcal{V} -matrices $S \colon X \to Y$ i.e. $\{S(x,y)\} \in \mathcal{V}$ with $(S \circ T)(x,z) = \sum_y T(x,y) \otimes S(y,z)$, $\mathsf{Mnd}(\mathcal{V}\text{-}\mathsf{Mat}) = \mathcal{V}\text{-}\mathsf{Cat}$ and $\mathsf{Cmd}(\mathcal{V}\text{-}\mathsf{Mat}) = \mathcal{V}\text{-}\mathsf{Cocat}$.

A \mathcal{V} -cocategory comes with cocomposition $C(x,z) \to \sum_y C(x,y) \otimes C(y,z)$ and coidentities $C(x,x) \to I$, coassociative and counital.

■ Fibrant: vertical 1-cells f turn to horizontal, companion \hat{f} & conjoint \check{f} .

■ Fibrant: vertical 1-cells f turn to horizontal, companion \hat{f} & conjoint \check{f} .

In
$$\mathcal{V}$$
-Mat, $f: X \to Y$ gives matrices $\hat{f}(x,y) = \check{f}(y,x) = \begin{cases} I \text{ if } fx = y \\ 0 \text{ if } fx \neq y \end{cases}$

■ Fibrant: vertical 1-cells f turn to horizontal, companion \hat{f} & conjoint \check{f} . In \mathcal{V} -Mat, $f: X \to Y$ gives matrices $\hat{f}(x,y) = \check{f}(y,x) = \begin{cases} I \text{ if } fx = y \\ 0 \text{ if } fx \neq y \end{cases}$

 $\mathsf{Mnd}(\mathbb{D}) \to \mathbb{D}_0$ is a fibration

■ Fibrant: vertical 1-cells f turn to horizontal, companion \hat{f} & conjoint \check{f} . In \mathcal{V} -Mat, $f: X \to Y$ gives matrices $\hat{f}(x,y) = \check{f}(y,x) = \begin{cases} I \text{ if } fx = y \\ 0 \text{ if } fx \neq y \end{cases}$

 $\mathsf{Mnd}(\mathbb{D}) \to \mathbb{D}_0$ is a fibration; reindexing $\check{f} \circ - \circ \hat{f} \colon \mathsf{Mnd}(\mathbb{D})_Y \to \mathsf{Mnd}(\mathbb{D})_X$.

■ Fibrant: vertical 1-cells f turn to horizontal, companion \hat{f} & conjoint \check{f} . In \mathcal{V} -Mat, $f: X \to Y$ gives matrices $\hat{f}(x,y) = \check{f}(y,x) = \begin{cases} I \text{ if } fx = y \\ 0 \text{ if } fx \neq y \end{cases}$

 $\mathsf{Mnd}(\mathbb{D}) \to \mathbb{D}_0$ is a fibration; reindexing $\check{f} \circ - \circ \hat{f} \colon \mathsf{Mnd}(\mathbb{D})_Y \to \mathsf{Mnd}(\mathbb{D})_X$. Dually, $\mathsf{Cmd}(\mathbb{D}) \to \mathbb{D}_0$ is an opfibration.

- Fibrant: vertical 1-cells f turn to horizontal, companion \hat{f} & conjoint \check{f} . In \mathcal{V} -Mat, $f: X \to Y$ gives matrices $\hat{f}(x,y) = \check{f}(y,x) = \begin{cases} I \text{ if } fx = y \\ 0 \text{ if } fx \neq y \end{cases}$
 - $\mathsf{Mnd}(\mathbb{D}) \to \mathbb{D}_0$ is a fibration; reindexing $\check{f} \circ \circ \hat{f} \colon \mathsf{Mnd}(\mathbb{D})_Y \to \mathsf{Mnd}(\mathbb{D})_X$. Dually, $\mathsf{Cmd}(\mathbb{D}) \to \mathbb{D}_0$ is an opfibration.
- Monoidal: \mathbb{D}_0 & \mathbb{D}_1 monoidal, $(N \circ M) \otimes (N' \circ M') \cong (N \otimes N') \circ (M \otimes M')$.

- Fibrant: vertical 1-cells f turn to horizontal, companion \hat{f} & conjoint \check{f} . In \mathcal{V} -Mat, $f: X \to Y$ gives matrices $\hat{f}(x,y) = \check{f}(y,x) = \begin{cases} I \text{ if } fx = y \\ 0 \text{ if } fx \neq y \end{cases}$
 - $\mathsf{Mnd}(\mathbb{D}) \to \mathbb{D}_0$ is a fibration; reindexing $\check{f} \circ \circ \hat{f} \colon \mathsf{Mnd}(\mathbb{D})_Y \to \mathsf{Mnd}(\mathbb{D})_X$. Dually, $\mathsf{Cmd}(\mathbb{D}) \to \mathbb{D}_0$ is an opfibration.
- Monoidal: \mathbb{D}_0 & \mathbb{D}_1 monoidal, $(N \circ M) \otimes (N' \circ M') \cong (N \otimes N') \circ (M \otimes M')$. In \mathcal{V} -Mat, $(X \otimes Y) = X \times Y$ & $(S \otimes T)((x, y), (z, w)) = S(x, z) \otimes T(y, w)$.

- Fibrant: vertical 1-cells f turn to horizontal, companion \hat{f} & conjoint \check{f} . In \mathcal{V} -Mat, $f: X \to Y$ gives matrices $\hat{f}(x,y) = \check{f}(y,x) = \begin{cases} I \text{ if } fx = y \\ 0 \text{ if } fx \neq y \end{cases}$
 - $\mathsf{Mnd}(\mathbb{D}) \to \mathbb{D}_0$ is a fibration; reindexing $\check{f} \circ \circ \hat{f} \colon \mathsf{Mnd}(\mathbb{D})_Y \to \mathsf{Mnd}(\mathbb{D})_X$. Dually, $\mathsf{Cmd}(\mathbb{D}) \to \mathbb{D}_0$ is an opfibration.
- Monoidal: \mathbb{D}_0 & \mathbb{D}_1 monoidal, $(N \circ M) \otimes (N' \circ M') \cong (N \otimes N') \circ (M \otimes M')$. In \mathcal{V} -Mat, $(X \otimes Y) = X \times Y$ & $(S \otimes T)((x, y), (z, w)) = S(x, z) \otimes T(y, w)$.

 $\mathsf{Mnd}(\mathbb{D})$ and $\mathsf{Cmd}(\mathbb{D})$ are monoidal

- Fibrant: vertical 1-cells f turn to horizontal, companion \hat{f} & conjoint \check{f} . In \mathcal{V} -Mat, $f: X \to Y$ gives matrices $\hat{f}(x,y) = \check{f}(y,x) = \begin{cases} I \text{ if } fx = y \\ 0 \text{ if } fx \neq y \end{cases}$
 - $\mathsf{Mnd}(\mathbb{D}) \to \mathbb{D}_0$ is a fibration; reindexing $\check{f} \circ \circ \hat{f} \colon \mathsf{Mnd}(\mathbb{D})_Y \to \mathsf{Mnd}(\mathbb{D})_X$. Dually, $\mathsf{Cmd}(\mathbb{D}) \to \mathbb{D}_0$ is an optibration.
- Monoidal: \mathbb{D}_0 & \mathbb{D}_1 monoidal, $(N \circ M) \otimes (N' \circ M') \cong (N \otimes N') \circ (M \otimes M')$. In \mathcal{V} -Mat, $(X \otimes Y) = X \times Y$ & $(S \otimes T)((x, y), (z, w)) = S(x, z) \otimes T(y, w)$.

 $\mathsf{Mnd}(\mathbb{D})$ and $\mathsf{Cmd}(\mathbb{D})$ are monoidal, with $C \otimes D$ comonad via $C \otimes D \to (C \circ C) \otimes (D \circ D) \cong (C \otimes D) \circ (C \otimes D)$.

■ Monoidal closed

Monoidal closed: lax double functor $H: \mathbb{D}^{op} \times \mathbb{D} \to \mathbb{D}$

In
$$\mathcal{V}$$
-Mat, $[X, Y] = Y^X$ and $H(S, T)(f, g) = \prod_{Y, Y} [S(x, y), T(fx, gy)].$

In
$$\mathcal{V}$$
-Mat, $[X,Y] = Y^X$ and $H(S,T)(f,g) = \prod_{x,y} [S(x,y), T(fx,gy)].$

$$H$$
 induces functor $\mathsf{Cmd}(\mathbb{D})^{\mathrm{op}}{ imes}\mathsf{Mnd}(\mathbb{D}){ o}\mathsf{Mnd}(\mathbb{D})$

convolution

In
$$\mathcal{V}$$
-Mat, $[X,Y] = Y^X$ and $H(S,T)(f,g) = \prod_{x,y} [S(x,y), T(fx,gy)].$

H induces functor $\mathsf{Cmd}(\mathbb{D})^{\mathrm{op}}{ imes}\mathsf{Mnd}(\mathbb{D}){ o}\mathsf{Mnd}(\mathbb{D})$

convolution

Locally presentable

In
$$\mathcal{V}$$
-Mat, $[X,Y] = Y^X$ and $H(S,T)(f,g) = \prod_{x,y} [S(x,y), T(fx,gy)].$

H induces functor $\mathsf{Cmd}(\mathbb{D})^{\mathrm{op}}{ imes}\mathsf{Mnd}(\mathbb{D}){ o}\mathsf{Mnd}(\mathbb{D})$

convolution

■ Locally presentable: \mathbb{D}_0 & \mathbb{D}_1 locally presentable, $\mathfrak{s},\mathfrak{t}$ cocontinuous right adjoints, - \circ - accessible in each variable.

In
$$\mathcal{V}$$
-Mat, $[X,Y] = Y^X$ and $H(S,T)(f,g) = \prod_{x,y} [S(x,y),T(fx,gy)].$

H induces functor $\mathsf{Cmd}(\mathbb{D})^{\mathrm{op}}{ imes}\mathsf{Mnd}(\mathbb{D}){ o}\mathsf{Mnd}(\mathbb{D})$

convolution

■ Locally presentable: \mathbb{D}_0 & \mathbb{D}_1 locally presentable, $\mathfrak{s},\mathfrak{t}$ cocontinuous right adjoints, - \circ - accessible in each variable.

In \mathcal{V} -Mat, Set is I. p.

In
$$\mathcal{V}$$
-Mat, $[X,Y] = Y^X$ and $H(S,T)(f,g) = \prod_{x,y} [S(x,y),T(fx,gy)].$

H induces functor $\mathsf{Cmd}(\mathbb{D})^{\mathrm{op}}{ imes}\mathsf{Mnd}(\mathbb{D}){ o}\mathsf{Mnd}(\mathbb{D})$

convolution

■ Locally presentable: \mathbb{D}_0 & \mathbb{D}_1 locally presentable, $\mathfrak{s},\mathfrak{t}$ cocontinuous right adjoints, - \circ - accessible in each variable.

In $\mathcal{V}\text{-}\mathrm{Mat}_1$ Set is I. p. & $\mathcal{V}\text{-}\mathrm{Mat}_1$ is too as pullback $V\text{-}\mathrm{Mat}_1 \to \mathsf{Fam}(\mathcal{V})$ $V\text{-}\mathrm{Mat}_1 \to \mathsf{Fam}(\mathcal{V})$ $V\text{-}\mathrm{Mat}_1 \to \mathsf{Fam}(\mathcal{V})$ $V\text{-}\mathrm{Mat}_1 \to \mathsf{Fam}(\mathcal{V})$

by the Limit Theorem.

■ Monoidal closed: lax double functor $H \colon \mathbb{D}^{\mathrm{op}} \times \mathbb{D} \to \mathbb{D}$ such that \mathbb{D}_0 & \mathbb{D}_1 monoidal closed, $\mathfrak{s}, \mathfrak{t}$ maps of adjunctions.

In
$$\mathcal{V}$$
-Mat, $[X,Y] = Y^X$ and $H(S,T)(f,g) = \prod_{x,y} [S(x,y),T(fx,gy)].$

H induces functor $\mathsf{Cmd}(\mathbb{D})^{\mathrm{op}}{ imes}\mathsf{Mnd}(\mathbb{D}){ o}\mathsf{Mnd}(\mathbb{D})$

convolution

■ Locally presentable: \mathbb{D}_0 & \mathbb{D}_1 locally presentable, $\mathfrak{s},\mathfrak{t}$ cocontinuous right adjoints, - \circ - accessible in each variable.

In
$$\mathcal{V}$$
-Mat, Set is I. p. & \mathcal{V} -Mat₁ is too as pullback
$$(\mathfrak{s},\mathfrak{t})\downarrow \qquad \qquad \downarrow$$
 Set
$$\overset{\mathcal{V}}{\longrightarrow} \mathsf{Set}$$

by the Limit Theorem.

Induced H has adjoint $\mathsf{Mnd}(\mathbb{D})^{\mathrm{op}} \times \mathsf{Mnd}(\mathbb{D}) \to \mathsf{Cmd}(\mathbb{D})$. univ. measuring

Monoidal closed: lax double functor $H \colon \mathbb{D}^{\mathrm{op}} \times \mathbb{D} o \mathbb{D}$ such that \mathbb{D}_0 & \mathbb{D}_1 monoidal closed, $\mathfrak{s},\mathfrak{t}$ maps of adjunctions.

In
$$\mathcal{V}$$
-Mat, $[X,Y] = Y^X$ and $H(S,T)(f,g) = \prod_{x,y} [S(x,y),T(fx,gy)].$

H induces functor $\mathsf{Cmd}(\mathbb{D})^{\mathrm{op}} \times \mathsf{Mnd}(\mathbb{D}) \to \mathsf{Mnd}(\mathbb{D})$, an action. *convolution*

Locally presentable: \mathbb{D}_0 & \mathbb{D}_1 locally presentable, $\mathfrak{s},\mathfrak{t}$ cocontinuous right adjoints, - o - accessible in each variable.

In
$$\mathcal{V}$$
-Mat, Set is I. p. & \mathcal{V} -Mat₁ is too as pullback
$$\begin{array}{c} \mathcal{V}\text{-Mat}_1 \to \mathsf{Fam}(\mathcal{V}) \\ (\mathfrak{s},\mathfrak{t})\downarrow & \downarrow \\ \mathsf{Set}^2 \stackrel{\times}{\longrightarrow} \mathsf{Set} \end{array}$$

by the Limit Theorem.

Induced H has adjoint $\mathsf{Mnd}(\mathbb{D})^{\mathrm{op}} \times \mathsf{Mnd}(\mathbb{D}) \to \mathsf{Cmd}(\mathbb{D})$. univ. measuring ■ Monoidal closed: lax double functor $H \colon \mathbb{D}^{\mathrm{op}} \times \mathbb{D} \to \mathbb{D}$ such that \mathbb{D}_0 & \mathbb{D}_1 monoidal closed, $\mathfrak{s}, \mathfrak{t}$ maps of adjunctions.

In
$$\mathcal{V}$$
-Mat, $[X, Y] = Y^X$ and $H(S, T)(f, g) = \prod_{x,y} [S(x, y), T(fx, gy)].$

H induces functor $\mathsf{Cmd}(\mathbb{D})^{\mathrm{op}} \times \mathsf{Mnd}(\mathbb{D}) {
ightarrow} \mathsf{Mnd}(\mathbb{D})$, an action. ${\it convolution}$

■ Locally presentable: \mathbb{D}_0 & \mathbb{D}_1 locally presentable, $\mathfrak{s},\mathfrak{t}$ cocontinuous right adjoints, - \circ - accessible in each variable.

In
$$\mathcal{V}$$
-Mat, Set is I. p. & \mathcal{V} -Mat₁ is too as pullback
$$\begin{array}{c} \mathcal{V}\text{-Mat}_1 \to \mathsf{Fam}(\mathcal{V}) \\ (\mathfrak{s},\mathfrak{t})\downarrow & \downarrow \\ \mathsf{Set}^2 \stackrel{\times}{\longrightarrow} \mathsf{Set} \end{array}$$

by the Limit Theorem.

Induced H has adjoint $\mathsf{Mnd}(\mathbb{D})^{\mathrm{op}} \times \mathsf{Mnd}(\mathbb{D}) \to \mathsf{Cmd}(\mathbb{D})$. univ. measuring

 \diamond Obtain enrichment of Mnd(\mathbb{D}) in Cmd(\mathbb{D})!

 \star For $\mathcal V$ symmetric monoidal closed & locally presentable, $\mathbb D=\mathcal V\text{-}\mathbb M$ at is a fibrant, monoidal closed & locally presentable double category.

- \star For ${\mathcal V}$ symmetric monoidal closed & locally presentable, ${\mathbb D}={\mathcal V}\text{-}{\mathbb M}$ at is a fibrant, monoidal closed & locally presentable double category.
 - Enrichment of V-categories in V-cocategories

- \star For $\mathcal V$ symmetric monoidal closed & locally presentable, $\mathbb D=\mathcal V\text{-}\mathbb M$ at is a fibrant, monoidal closed & locally presentable double category.
- Enrichment of V-categories in V-cocategories

- \star For $\mathcal V$ symmetric monoidal closed & locally presentable, $\mathbb D=\mathcal V\text{-}\mathbb M$ at is a fibrant, monoidal closed & locally presentable double category.
- Enrichment of \mathcal{V} -categories in \mathcal{V} -cocategories

- \star For $\mathcal V$ symmetric monoidal closed & locally presentable, $\mathbb D=\mathcal V\text{-}\mathbb M$ at is a fibrant, monoidal closed & locally presentable double category.
- ullet Enrichment of ${\mathcal V}$ -categories in ${\mathcal V}$ -cocategories

- · objects are sets X, Y, \dots
- · vertical 1-cells are functions f, g, \ldots

- \star For $\mathcal V$ symmetric monoidal closed & locally presentable, $\mathbb D=\mathcal V\text{-}\mathbb M$ at is a fibrant, monoidal closed & locally presentable double category.
- Enrichment of \mathcal{V} -categories in \mathcal{V} -cocategories

- · objects are sets X, Y, \dots
- · vertical 1-cells are functions f, g, \ldots
- · horizontal 1-cells are coloured symmetric sequences $M: SX^{\mathrm{op}} \times Y \rightarrow \mathcal{V}$

- \star For $\mathcal V$ symmetric monoidal closed & locally presentable, $\mathbb D=\mathcal V\text{-}\mathbb M$ at is a fibrant, monoidal closed & locally presentable double category.
- Enrichment of \mathcal{V} -categories in \mathcal{V} -cocategories

- · objects are sets X, Y, \dots
- · vertical 1-cells are functions f, g, \ldots
- · horizontal 1-cells are coloured symmetric sequences $M: SX^{\mathrm{op}} \times Y \rightarrow \mathcal{V}$
- · 2-maps are $M(x_1, \ldots, x_n; y) \rightarrow N(fx_1, \ldots, fx_n; gy)$

- \star For $\mathcal V$ symmetric monoidal closed & locally presentable, $\mathbb D=\mathcal V\text{-}\mathbb M$ at is a fibrant, monoidal closed & locally presentable double category.
- Enrichment of \mathcal{V} -categories in \mathcal{V} -cocategories

Goal: employ/extend theory to apply to $\mathbb{D} = \mathcal{V}$ -Sym

- · objects are sets X, Y, \ldots
- · vertical 1-cells are functions f, g, \ldots
- · horizontal 1-cells are coloured symmetric sequences $M: SX^{\mathrm{op}} \times Y {
 ightharpoonup} \mathcal{V}$
- · 2-maps are $M(x_1, \ldots, x_n; y) \rightarrow N(fx_1, \ldots, fx_n; gy)$

Horizontal composition is generalization of substitution for species.

- \star For $\mathcal V$ symmetric monoidal closed & locally presentable, $\mathbb D=\mathcal V\text{-}\mathbb M$ at is a fibrant, monoidal closed & locally presentable double category.
 - ullet Enrichment of ${\cal V}$ -categories in ${\cal V}$ -cocategories

Goal: employ/extend theory to apply to $\mathbb{D} = \mathcal{V}$ -Sym

- · objects are sets X, Y, \ldots
- · vertical 1-cells are functions f, g, \ldots
- · horizontal 1-cells are coloured symmetric sequences $M: SX^{\mathrm{op}} \times Y {
 ightharpoonup} \mathcal{V}$
- · 2-maps are $M(x_1, \ldots, x_n; y) \rightarrow N(fx_1, \ldots, fx_n; gy)$

Horizontal composition is generalization of substitution for species.

■ V-Sym is fibrant

- \star For $\mathcal V$ symmetric monoidal closed & locally presentable, $\mathbb D=\mathcal V\text{-}\mathbb M$ at is a fibrant, monoidal closed & locally presentable double category.
 - Enrichment of \mathcal{V} -categories in \mathcal{V} -cocategories

Goal: employ/extend theory to apply to $\mathbb{D} = \mathcal{V}$ -Sym

- · objects are sets X, Y, \ldots
- · vertical 1-cells are functions f, g, \ldots
- · horizontal 1-cells are coloured symmetric sequences $M: SX^{\mathrm{op}} \times Y {
 ightharpoonup} \mathcal{V}$
- · 2-maps are $M(x_1, \ldots, x_n; y) \rightarrow N(fx_1, \ldots, fx_n; gy)$

Horizontal composition is generalization of substitution for species.

■ V-Sym is fibrant; but not monoidal double anymore!

A double category is *oplax* monoidal with comparison maps

$$(N \circ M) \otimes (N' \circ M') \rightarrow (N \otimes N') \circ (M \otimes M'), \quad 1_X \otimes 1_{X'} \rightarrow 1_{X \otimes X'}$$
 $I_1 \rightarrow I_1 \circ I_1, \quad I_1 \rightarrow 1_I$

satisfying coherence axioms.

A double category is oplax monoidal with comparison maps

$$(N \circ M) \otimes (N' \circ M') \rightarrow (N \otimes N') \circ (M \otimes M'), \quad 1_X \otimes 1_{X'} \rightarrow 1_{X \otimes X'}$$

 $I_1 \rightarrow I_1 \circ I_1, \quad I_1 \rightarrow 1_I$

satisfying coherence axioms.

An oplax monoidal double category with a single object and vertical arrow is precisely a duoidal category.

A double category is oplax monoidal with comparison maps

$$(N \circ M) \otimes (N' \circ M') \rightarrow (N \otimes N') \circ (M \otimes M'), \quad 1_X \otimes 1_{X'} \rightarrow 1_{X \otimes X'}$$

 $I_1 \rightarrow I_1 \circ I_1, \quad I_1 \rightarrow 1_I$

satisfying coherence axioms.

An oplax monoidal double category with a single object and vertical arrow is precisely a duoidal category.

End result: V-Sym is an oplax monoidal double category.

A double category is *oplax* monoidal with comparison maps

$$(N \circ M) \otimes (N' \circ M') \rightarrow (N \otimes N') \circ (M \otimes M'), \quad 1_X \otimes 1_{X'} \rightarrow 1_{X \otimes X'}$$

 $I_1 \rightarrow I_1 \circ I_1, \quad I_1 \rightarrow 1_I$

satisfying coherence axioms.

An oplax monoidal double category with a single object and vertical arrow is precisely a duoidal category.

End result: V-Sym is an oplax monoidal double category. How?

A double category is *oplax* monoidal with comparison maps

$$(N \circ M) \otimes (N' \circ M') \rightarrow (N \otimes N') \circ (M \otimes M'), \quad 1_X \otimes 1_{X'} \rightarrow 1_{X \otimes X'}$$

 $I_1 \rightarrow I_1 \circ I_1, \quad I_1 \rightarrow 1_I$

satisfying coherence axioms.

An oplax monoidal double category with a single object and vertical arrow is precisely a duoidal category.

End result: V-Sym is an oplax monoidal double category. How? As a Kleisli-type structure on \mathcal{V} -Prof

A double category is *oplax* monoidal with comparison maps

$$(N \circ M) \otimes (N' \circ M') \rightarrow (N \otimes N') \circ (M \otimes M'), \quad 1_X \otimes 1_{X'} \rightarrow 1_{X \otimes X'}$$

 $I_1 \rightarrow I_1 \circ I_1, \quad I_1 \rightarrow 1_I$

satisfying coherence axioms.

An oplax monoidal double category with a single object and vertical arrow is precisely a duoidal category.

End result: \mathcal{V} -Sym is an oplax monoidal double category. How? As a Kleisli-type structure on \mathcal{V} -Prof with induced monoidality.

$$\begin{array}{cccc} TTX \xrightarrow{TTM} & TTY & X \xrightarrow{M} & Y \\ m_X \downarrow & \downarrow m_M & \downarrow m_Y & e_X \downarrow & \downarrow e_M & \downarrow e_Y \\ TX \xrightarrow{TM} & TY & TX \xrightarrow{TM} & TY \end{array}$$

▶ A (vertical) double monad is a double functor $T: \mathbb{D} \to \mathbb{D}$ with transformations $m: TT \Rightarrow T$, $e: 1 \Rightarrow T$ with

$$\begin{array}{cccc} TTX \xrightarrow{TTM} & TTY & X \xrightarrow{M} & Y \\ m_X \downarrow & \downarrow m_M & \downarrow m_Y & e_X \downarrow & \downarrow e_M & \downarrow e_Y \\ TX \xrightarrow{TM} & TY & TX \xrightarrow{TM} & TY \end{array}$$

It is special when \hat{m}_X , \hat{e}_X exist, and transposes of m_M , e_M are invertible.

$$\begin{array}{cccc} TTX \xrightarrow{TTM} & TTY & X \xrightarrow{M} & Y \\ m_X \downarrow & \downarrow m_M & \downarrow m_Y & e_X \downarrow & \downarrow e_M & \downarrow e_Y \\ TX \xrightarrow{TM} & TY & TX \xrightarrow{TM} & TY \end{array}$$

- It is special when \hat{m}_X , \hat{e}_X exist, and transposes of m_M , e_M are invertible.
- lacksquare Each special double monad $T\colon \mathbb{D} o\mathbb{D}$ gives double category $\mathbb{K}\mathsf{I}(T)$

$$\begin{array}{cccc} TTX \xrightarrow{TTM} & TTY & X \xrightarrow{M} & Y \\ m_X \downarrow & \downarrow m_M & \downarrow m_Y & e_X \downarrow & \downarrow e_M & \downarrow e_Y \\ TX \xrightarrow{TM} & TY & TX \xrightarrow{TM} & TY \end{array}$$

- ▶ It is *special* when \hat{m}_X , \hat{e}_X exist, and transposes of m_M , e_M are invertible.
- lacksquare Each special double monad $T\colon \mathbb{D} o \mathbb{D}$ gives double category $\mathbb{K}\mathsf{I}(T)$
 - $\cdot \ \mathbb{K}\mathsf{I}(T)_0 \text{ is } \mathbb{D}_0$

$$\begin{array}{cccccc} TTX & \xrightarrow{TTM} & TTY & X & \xrightarrow{M} & Y \\ m_X \downarrow & \downarrow m_M & \downarrow m_Y & e_X \downarrow & \downarrow e_M & \downarrow e_Y \\ TX & \xrightarrow{TM} & TY & TX & \xrightarrow{TM} & TY \end{array}$$

- ▶ It is *special* when \hat{m}_X , \hat{e}_X exist, and transposes of m_M , e_M are invertible.
- lacksquare Each special double monad $T \colon \mathbb{D} o \mathbb{D}$ gives double category $\mathbb{K}\mathsf{I}(T)$
 - · $\mathbb{K}I(T)_0$ is \mathbb{D}_0
 - \cdot $M: X \rightsquigarrow Y$ are horizontal $M: X \longrightarrow TY$ in \mathbb{D}

$$\begin{array}{cccc} TTX \xrightarrow{TTM} & TTY & X \xrightarrow{M} & Y \\ m_X \downarrow & \downarrow m_M & \downarrow m_Y & e_X \downarrow & \downarrow e_M & \downarrow e_Y \\ TX \xrightarrow{TM} & TY & TX \xrightarrow{TM} & TY \end{array}$$

- ▶ It is *special* when \hat{m}_X , \hat{e}_X exist, and transposes of m_M , e_M are invertible.
- Each special double monad $T: \mathbb{D} \to \mathbb{D}$ gives double category $\mathbb{K}I(T)$
 - · $\mathbb{K}I(T)_0$ is \mathbb{D}_0
 - · $M: X \rightsquigarrow Y$ are horizontal $M: X \longrightarrow TY$ in \mathbb{D}

ightharpoonup A (vertical) double monad is a double functor $T: \mathbb{D} \to \mathbb{D}$ with transformations $m: TT \Rightarrow T, e: 1 \Rightarrow T$ with

- ▶ It is special when \hat{m}_X , \hat{e}_X exist, and transposes of m_M , e_M are invertible.
- lacksquare Each special double monad $T\colon \mathbb{D} o\mathbb{D}$ gives double category $\mathbb{K}\mathsf{I}(T)$
 - $\cdot \mathbb{K}I(T)_0$ is \mathbb{D}_0
 - \cdot $M: X \rightsquigarrow Y$ are horizontal $M: X \longrightarrow TY$ in \mathbb{D}

 $\cdot \text{ horizontal composition is } X \stackrel{M}{\longrightarrow} TY \stackrel{TN}{\longrightarrow} TTZ \stackrel{\hat{m}_Z}{\longrightarrow} TZ$

lacktriangle A double monad ${\mathcal T}$ on a monoidal double category ${\mathbb D}$

ightharpoonup A double monad T on a monoidal double category $\mathbb D$ is pseudomonoidal when T lax monoidal and m,e pseudomonoidal

ightharpoonup A double monad T on a monoidal double category $\mathbb D$ is pseudomonoidal when T lax monoidal and m,e pseudomonoidal

ightharpoonup A double monad T on a monoidal double category $\mathbb D$ is pseudomonoidal when T lax monoidal and m, e pseudomonoidal

For T a pseudomonoidal special double monad,

 $\mathbb{K}I(T)$ is an oplax monoidal double category.

ightharpoonup A double monad T on a monoidal double category $\mathbb D$ is pseudomonoidal when T lax monoidal and m, e pseudomonoidal

For T a pseudomonoidal special double monad, if lax structure maps $I \to TI$, $TX \otimes TY \xrightarrow{\tau} T(X \otimes Y)$ have companions, $\mathbb{K}I(T)$ is an oplax monoidal double category.

ightharpoonup A double monad T on a monoidal double category $\mathbb D$ is pseudomonoidal when T lax monoidal and m, e pseudomonoidal

For T a pseudomonoidal special double monad, if lax structure maps $I \to TI$, $TX \otimes TY \xrightarrow{\tau} T(X \otimes Y)$ have companions, $\mathbb{K}I(T)$ is an oplax monoidal double category.

* Induced tensor is $M \boxtimes N = X \otimes Z \xrightarrow{M \otimes N} TY \otimes TW \xrightarrow{\hat{\tau}} T(Y \otimes W)$.

 \star 'Free symmetric strict monoidal category 2-monad' $S \colon \mathcal{V}\text{-Cat} \to \mathcal{V}\text{-Cat}$

with
$$S_n(C)((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sum_{\sigma} \prod_{1\leq i\leq n} C(x_{\sigma(i)},y_i)$$

 \star 'Free symmetric strict monoidal category 2-monad' $S \colon \mathcal{V}\text{-Cat} \to \mathcal{V}\text{-Cat}$

with
$$S_n(C)((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sum_{\sigma} \prod_{1\leq i\leq n} C(x_{\sigma(i)},y_i)$$

extends to such a double monad on the monoidal double category \mathcal{V} - \mathbb{P} rof (for \mathcal{V} cartesian monoidal).

 \star 'Free symmetric strict monoidal category 2-monad' $S \colon \mathcal{V}\text{-Cat} \to \mathcal{V}\text{-Cat}$

with
$$S_n(C)((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sum_{\sigma} \prod_{1\leq i\leq n} C(x_{\sigma(i)},y_i)$$

extends to such a double monad on the monoidal double category \mathcal{V} - \mathbb{P} rof (for \mathcal{V} cartesian monoidal).

Kleisli double category is V-CatSym of categorical symmetric sequences $M: SX^{\mathrm{op}} \times Y \rightarrow \mathcal{V}$, with 'discrete' case \mathcal{V} -Sym.

 \star 'Free symmetric strict monoidal category 2-monad' $S \colon \mathcal{V}\text{-Cat} \to \mathcal{V}\text{-Cat}$

with
$$S_n(C)((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sum_{\sigma} \prod_{1\leq i\leq n} C(x_{\sigma(i)},y_i)$$

extends to such a double monad on the monoidal double category \mathcal{V} - \mathbb{P} rof (for \mathcal{V} cartesian monoidal).

Kleisli double category is \mathcal{V} -Cat \mathbb{S} ym of categorical symmetric sequences $M: SX^{\mathrm{op}} \times Y \rightarrow \mathcal{V}$, with 'discrete' case \mathcal{V} -Sym.

Oplax monoidal structure is many-object arithmetic product of species

$$(M\boxtimes N)(\vec{a},(x,z))=\int^{\vec{y},\vec{w}}S(Y\times W)(\vec{a},\vec{y}\boxtimes\vec{w})\times M(\vec{y},x)\times N(\vec{w},z)$$

► Extend previous results from monoidal double to <u>oplax</u> monoidal double categories

► Extend previous results from monoidal double to <u>oplax</u> monoidal double categories: do we still obtain enrichment of monads in comonads?

- ▶ Extend previous results from monoidal double to <u>oplax</u> monoidal double categories: do we still obtain enrichment of monads in comonads?
- ▶ Further explore V-Sym: is it monoidal closed and locally presentable as a double category?

- ► Extend previous results from monoidal double to <u>oplax</u> monoidal double categories: do we still obtain enrichment of monads in comonads?
- ightharpoonup Further explore $\mathcal{V} ext{-}\mathbb{S}$ ym: is it monoidal closed and locally presentable as a double category?

[One-object case] If ${\cal V}$ is symmetric monoidal closed and loc presentable,

- positive operads are enriched in positive cooperads, if ${\cal V}$ has biproducts;
- \bullet symmetric operads are enriched in symmetric cooperads, if ${\cal V}$ is cartesian.

- ► Extend previous results from monoidal double to <u>oplax</u> monoidal double categories: do we still obtain enrichment of monads in comonads?
- ightharpoonup Further explore $\mathcal{V} ext{-}\mathbb{S}$ ym: is it monoidal closed and locally presentable as a double category?

[One-object case] If ${\mathcal V}$ is symmetric monoidal closed and loc presentable,

- ullet positive operads are enriched in positive cooperads, if ${\cal V}$ has biproducts;
- ullet symmetric operads are enriched in symmetric cooperads, if ${\cal V}$ is cartesian.

```
\mathsf{Mod}(\mathbb{D}) \overset{\mathrm{enriched}}{\longrightarrow} \mathsf{Comod}(\mathbb{D})
```

Thank you for your attention!

- Aravantinos-Sotiropoulos, Vasilakopoulou, "Enriched duality in double categories II: modules and comodules", arXiv:2408.03180
- Gambino, Garner, Vasilakopoulou, "Monoidal Kleisli bicategories and the arithmetic product of symmetric sequences", Documenta Mathematica (2024)