Stability theory

Independence relations

Categorical approach

Lifting independence

References

Lifting independence

Mark Kamsma Joint with Jiří Rosický

Masaryk University

Categorical Logic and Higher Categories - 19 December 2024

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Table of Contents

- 2 Independence relations
- 3 Categorical approach
- 4 Lifting independence

Table of Contents

- 2 Independence relations
- 3 Categorical approach
- 4 Lifting independence

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへの

 Stability theory
 Independence relations
 Categorical approach
 Lifting independence
 References

 Stability theory
 Q-vector spaces and algebraically closed fields
 References
 References

Can we characterise which $\mathbb{Q}\text{-vector}$ spaces there are (up to isomorphism)?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Stability theory
 Independence relations
 Categorical approach
 Lifting independence
 References

 Stability theory
 O-vector spaces and algebraically closed fields
 Categorical approach
 <

Can we characterise which $\mathbb Q\text{-vector}$ spaces there are (up to isomorphism)?

Yes, easy, \mathbb{Q} -vector spaces are determined (up to isomorphism) by their dimension.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Stability theory

ndependence relations

Categorical approach

Lifting independence

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Stability theory Q-vector spaces and algebraically closed fields

Can we characterise which $\mathbb{Q}\text{-vector}$ spaces there are (up to isomorphism)?

Yes, easy, $\mathbb{Q}\text{-vector spaces are determined (up to isomorphism) by their dimension.$

That is, a well-defined cardinal dim(V) can be assigned to each \mathbb{Q} -vector space V and there is exactly one \mathbb{Q} -vector space with dimension κ for each cardinal κ .

Stability theory ○●○○○○○○○○○ Independence relations

Categorical approach

Lifting independence

References

Stability theory Q-vector spaces and algebraically closed fields

Can we characterise which $\mathbb Q\text{-vector}$ spaces there are (up to isomorphism)?

Yes, easy, $\mathbb{Q}\text{-vector spaces are determined (up to isomorphism) by their dimension.$

That is, a well-defined cardinal dim(V) can be assigned to each \mathbb{Q} -vector space V and there is exactly one \mathbb{Q} -vector space with dimension κ for each cardinal κ .

Similarly, algebraically closed fields (of a fixed characteristic) are determined by their transcendence degree.

Stability theory

Morley (1965): if a (countable) theory has exactly one model of some uncountable cardinality then it has exactly one model of every uncountable cardinality.

Stability theory

Morley (1965): if a (countable) theory has exactly one model of some uncountable cardinality then it has exactly one model of every uncountable cardinality.

This applies to our examples of $\mathbb{Q}\text{-vector}$ spaces and algebraically closed fields.

Stability theory

Morley (1965): if a (countable) theory has exactly one model of some uncountable cardinality then it has exactly one model of every uncountable cardinality.

This applies to our examples of $\mathbb{Q}\text{-vector}$ spaces and algebraically closed fields.

This sparked a great amount of research with as a result Shelah's celebrated *stability theory* (1970).

Stability theory 000●0000000	Independence relations	Categorical approach	Lifting independence	References
Stability the Main gap theore	neory			

Write $I(T, \kappa)$ for the number of models of a theory T of cardinality κ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Write $I(T, \kappa)$ for the number of models of a theory T of cardinality κ .

```
What is I(T, \kappa) for each \kappa?
```


Write $I(T, \kappa)$ for the number of models of a theory T of cardinality κ .

```
What is I(T, \kappa) for each \kappa?
```

So Morley's theorem says that if $I(T, \kappa) = 1$ for some uncountable κ then $I(T, \kappa) = 1$ for all uncountable κ (T countable).

Write $I(T, \kappa)$ for the number of models of a theory T of cardinality κ .

What is $I(T, \kappa)$ for each κ ?

So Morley's theorem says that if $I(T, \kappa) = 1$ for some uncountable κ then $I(T, \kappa) = 1$ for all uncountable κ (T countable).

Theorem (Main Gap Theorem, Shelah (1982))

Let T be a countable theory. Either $I(T, \aleph_{\alpha}) = 2^{\aleph_{\alpha}}$ for all $\alpha \ge 1$ (i.e. it is maximal) or

$$I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|)$$

for all $\alpha \geq 1$.

Stability theory 0000●000000	Independence relations	Categorical approach	Lifting independence	References
Stability t	heory			

To define a good notion of dimension, we will need a notion of independence (think back to linear independence and algebraic independence).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Stability theory

To define a good notion of dimension, we will need a notion of independence (think back to linear independence and algebraic independence).

A key idea in Shelah's work is *forking*, which yields an independence relation.

Stability theory

To define a good notion of dimension, we will need a notion of independence (think back to linear independence and algebraic independence).

A key idea in Shelah's work is *forking*, which yields an independence relation.

Side note: it is actually the negation, so non-forking, that gives us independence. So forking actually expresses that things are dependent.

Stability theory

To define a good notion of dimension, we will need a notion of independence (think back to linear independence and algebraic independence).

A key idea in Shelah's work is *forking*, which yields an independence relation.

Side note: it is actually the negation, so non-forking, that gives us independence. So forking actually expresses that things are dependent.

Linear independence in vector spaces coincides with non-forking. Same for algebraic independence in algebraically closed fields.

Stability theory

To define a good notion of dimension, we will need a notion of independence (think back to linear independence and algebraic independence).

A key idea in Shelah's work is *forking*, which yields an independence relation.

Side note: it is actually the negation, so non-forking, that gives us independence. So forking actually expresses that things are dependent.

Linear independence in vector spaces coincides with non-forking. Same for algebraic independence in algebraically closed fields.

Shelah pinned down a class of theories where forking is very well-behaved, the *stable* theories.

Stability theory 00000€00000	Independence relations	Categorical approach	Lifting independence	References
Stability t	heory			

A map of the universe

Source: https://forkinganddividing.com

Stability theory 000000●0000	Independence relations	Categorical approach	Lifting independence	References
Stability tl	neory			

A map of the universe - Stable

Source: https://forkinganddividing.com

		0000	0000000000	
Stability theory	Independence relations	Categorical approach	Lifting independence	References

A map of the universe - Simple

Source: https://forkinganddividing.com

Stability theory 0000000000000	Independence relations	Categorical approach	Lifting independence	References
Stability t	heory			

A map of the universe - $NSOP_1$

Source: https://forkinganddividing.com

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In NSOP₁ theories forking is no longer so well-behaved, yet many $NSOP_1$ theories with a good notion of independence were known.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In NSOP₁ theories forking is no longer so well-behaved, yet many NSOP₁ theories with a good notion of independence were known.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Kaplan and Ramsey, inspired by ideas from Kim, developed a notion called *Kim-forking*, which is well-behaved in NSOP₁ theories (2017).

In NSOP₁ theories forking is no longer so well-behaved, yet many NSOP₁ theories with a good notion of independence were known.

Kaplan and Ramsey, inspired by ideas from Kim, developed a notion called *Kim-forking*, which is well-behaved in NSOP₁ theories (2017).

The 'good' case of Shelah's main gap theorem takes place in the stable class (even superstable). However, the tools developed for it are still useful in the simple and $NSOP_1$ classes. So it is interesting to know where a theory lives in this picture.

 Stability theory cooocococo
 Independence relations
 Categorical approach cooococococo
 Lifting independence
 References

 Stability theory Classification based on independence
 Categorical approach
 Lifting independence
 References

We can define an independence relation to be *stable* if it satisfies a certain list of properties.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We can define an independence relation to be *stable* if it satisfies a certain list of properties.

Similarly, an independence relation is *simple* (resp. *NSOP*₁-*like*) if it satisfies the same list of properties, minus one (resp. minus two) specific properties.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We can define an independence relation to be *stable* if it satisfies a certain list of properties.

Similarly, an independence relation is *simple* (resp. *NSOP*₁-*like*) if it satisfies the same list of properties, minus one (resp. minus two) specific properties.

Theorem

A first-order theory T is stable/simple/NSOP₁ iff there is a stable/simple/NSOP₁-like independence relation. Furthermore, this independence relation is unique.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Table of Contents

Stability theory

- 2 Independence relations
- 3 Categorical approach
- 4 Lifting independence

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Let V be an \mathbb{Q} -vector space and let $A, B, C \subseteq V$. We define:

$$A \stackrel{V}{\underset{C}{\downarrow}} B \iff \operatorname{span}(A \cup C) \cap \operatorname{span}(B \cup C) \subseteq \operatorname{span}(C).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We say that A is independent from B over C.

Independence relations

Let V be an \mathbb{Q} -vector space and let $A, B, C \subseteq V$. We define:

$$A \stackrel{V}{\underset{C}{\downarrow}} B \iff \operatorname{span}(A \cup C) \cap \operatorname{span}(B \cup C) \subseteq \operatorname{span}(C).$$

We say that A is independent from B over C.

We have that $a_1, \ldots, a_n \in V$ are linearly independent iff $a_i \perp_{\emptyset}^{V} a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$ for all $1 \le i \le n$.

Independence relations

Let V be an \mathbb{Q} -vector space and let $A, B, C \subseteq V$. We define:

$$A \stackrel{V}{\underset{C}{\downarrow}} B \iff \operatorname{span}(A \cup C) \cap \operatorname{span}(B \cup C) \subseteq \operatorname{span}(C).$$

We say that A is independent from B over C.

We have that $a_1, \ldots, a_n \in V$ are linearly independent iff $a_i \perp_{\emptyset}^{V} a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$ for all $1 \le i \le n$.

We call \bigcup an *independence relation*.

Stability theory	Independence relations ○○●	Categorical approach	Lifting independence	References
Independ	ence relations			
Properties				

Let V be an \mathbb{Q} -vector space and let $A, B, C \subseteq V$. We define:

$$A \stackrel{V}{\underset{C}{\sqcup}} B \iff \operatorname{span}(A \cup C) \cap \operatorname{span}(B \cup C) \subseteq \operatorname{span}(C).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For $\mathbb Q\text{-vector spaces}\ {\textstyle \ }$ has nice properties.

Stability theory	Independence relations	Categorical approach	Lifting independence	References
Independ	ence relations			
Properties				

Let V be an \mathbb{Q} -vector space and let $A, B, C \subseteq V$. We define:

$$A \stackrel{V}{\underset{C}{\sqcup}} B \iff \operatorname{span}(A \cup C) \cap \operatorname{span}(B \cup C) \subseteq \operatorname{span}(C).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For \mathbb{Q} -vector spaces igcup has nice properties.

If
$$A \bigsqcup_{C}^{V} B$$
 then also $B \bigsqcup_{C}^{V} A$ (symmetry).
Stability theory	Independence relations	Categorical approach	Lifting independence	References
Independ	ence relations			
Properties				

Let V be an \mathbb{Q} -vector space and let $A, B, C \subseteq V$. We define:

$$A \stackrel{V}{\underset{C}{\cup}} B \iff \operatorname{span}(A \cup C) \cap \operatorname{span}(B \cup C) \subseteq \operatorname{span}(C).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For \mathbb{Q} -vector spaces igcup has nice properties.

If
$$A \perp_{C}^{V} B$$
 then also $B \perp_{C}^{V} A$ (symmetry).
If $B' \subseteq B$ and $A \perp_{C}^{V} B$ then also $A \perp_{C}^{V} B'$ (monotonicity).

Stability theory	Independence relations	Categorical approach	Lifting independence	References
Independ	ence relations			
Properties				

Let V be an \mathbb{Q} -vector space and let $A, B, C \subseteq V$. We define:

$$A \stackrel{V}{\underset{C}{\sqcup}} B \iff \operatorname{span}(A \cup C) \cap \operatorname{span}(B \cup C) \subseteq \operatorname{span}(C).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For \mathbb{Q} -vector spaces igcup has nice properties.

If
$$A extstyle _C^V B$$
 then also $B extstyle _C^V A$ (symmetry).
If $B' \subseteq B$ and $A extstyle _C^V B$ then also $A extstyle _C^V B'$ (monotonicity).

And some more ...

Table of Contents

Stability theory

2 Independence relations

- 3 Categorical approach
- 4 Lifting independence

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼

Stability theory	Independence relations	Categorical approach ○●○○	Lifting independence	References
Categorica Setup	l approach			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Stability theory	Independence relations	Categorical approach ○●○○	Lifting independence	References
Categoric	al approach			
Setup				

Stability theory	Independence relations	Categorical approach ○●○○	Lifting independence	References
Categoric	al approach			
Setup				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Crucial properties of Mod(T):

It is an accessible category.

Stability theory	Independence relations	Categorical approach ○●○○	Lifting independence	References
Categorica _{Setup}	l approach			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- It is an accessible category.
- It has directed colimits.

Stability theory	Independence relations	Categorical approach ○●○○	Lifting independence	References
Categorica Setup	l approach			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- It is an accessible category.
- It has directed colimits.
- 3 All arrows are monomorphisms.

OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	o €00	approach Litting ind	lependence References
Categorical appro	bach		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- It is an accessible category.
- It has directed colimits.
- 3 All arrows are monomorphisms.
- It has the amalgamation property.

Stability theory 00000000000	Independence relations	Categorical approach ○●○○	Lifting independence	References
Categorica _{Setup}	l approach			

Crucial properties of Mod(T):

- It is an accessible category.
- It has directed colimits.
- 3 All arrows are monomorphisms.
- It has the amalgamation property.

A category satisfying the first three items is called an *AECat*, which is short for *Abstract Elementary Category* (Kamsma [2020]).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Stability theory	Independence relations	Categorical approach ○●○○	Lifting independence	References
Categorica Setup	I approach			
Categorica _{Setup}	I approach			

Crucial properties of Mod(T):

- It is an accessible category.
- It has directed colimits.
- 3 All arrows are monomorphisms.
- It has the amalgamation property.

A category satisfying the first three items is called an *AECat*, which is short for *Abstract Elementary Category* (Kamsma [2020]).

The final item is considered a separate property, and is abbreviated to AP.

Stability theory 00000000000	Independence relations	Categorical approach ○○●○	Lifting independence	References
Categorica Examples	l approach			
AECats a theory.	are more general th	an categories of 1	models of a first-o	order

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Stability theory	Independence relations	Categorical approach	Lifting independence	References
Categorica Examples	al approach			

AECats are more general than categories of models of a first-order theory.

For a first-order theory T the category Mod(T) is an AECat with AP.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

AECats are more general than categories of models of a first-order theory.

- For a first-order theory T the category Mod(T) is an AECat with AP.
- For a positive theory T we let Mod(T) be the category of p.c. models and embeddings, then again Mod(T) is an AECat with AP.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Examples

AECats are more general than categories of models of a first-order theory.

- For a first-order theory T the category Mod(T) is an AECat with AP.
- For a positive theory T we let Mod(T) be the category of p.c. models and embeddings, then again Mod(T) is an AECat with AP.
- So For any continuous theory T we can form MetMod(T), which is an AECat with AP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Categorical approach

Examples

AECats are more general than categories of models of a first-order theory.

- For a first-order theory T the category Mod(T) is an AECat with AP.
- For a positive theory T we let Mod(T) be the category of p.c. models and embeddings, then again Mod(T) is an AECat with AP.
- For any continuous theory T we can form MetMod(T), which is an AECat with AP.
- Any Abstract Elementary Class (AEC) K can be viewed as a category by taking as arrows K-embeddings: that is, embeddings f : M → N such that f(M) ≤_K N. Then K is an AECat and the definition of AP coincides with the definition of "amalgamation property" as it is usually stated for AECs.

 Stability theory
 Independence relations
 Categorical approach
 Lifting independence
 References

 Categorical approach
 Categorical approach
 Categorical approach
 Categorical approach
 Categorical approach
 References

Categorical independence

Using the ideas from Lieberman et al. [2019].

Definition

An independence relation \bigcup on a category $\mathcal C$ is a relation on commuting squares in $\mathcal C.$ If a square is in the relation we call it independent and write

$$\begin{array}{c} A \longrightarrow D \\ \uparrow \qquad \downarrow \qquad \uparrow \\ C \longrightarrow B \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Categorical independence

Using the ideas from Lieberman et al. [2019].

Definition

An independence relation \bigcup on a category $\mathcal C$ is a relation on commuting squares in $\mathcal C.$ If a square is in the relation we call it independent and write

$$\begin{array}{c} A \longrightarrow D \\ \uparrow \qquad \downarrow \qquad \uparrow \\ C \longrightarrow B \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Throughout, we should think of C as an AECat.

イロト 不得 トイヨト イヨト

3

Table of Contents

Stability theory

- 2 Independence relations
- 3 Categorical approach
- 4 Lifting independence

 Stability theory
 Independence relations
 Categorical approach
 Lifting independence
 References

 Concrete example
 Concrete example
 Concrete example
 Concrete example
 Concrete example

Fix a field K and consider **Bil**_K, the category of bilinear spaces over K with injective bilinear morphisms (i.e., injective linear maps that respect the bilinear form).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Stability theory
 Independence relations
 Categorical approach
 Lifting independence
 References

 Concrete example
 Concrete example
 Concrete example
 Concrete example
 Concrete example

Fix a field K and consider **Bil**_K, the category of bilinear spaces over K with injective bilinear morphisms (i.e., injective linear maps that respect the bilinear form).

Let $\mathbf{Vec}_{\mathcal{K}}$ be the category of vector spaces over \mathcal{K} with injective linear maps and recall that we had an independence relation \bigcup on $\mathbf{Vec}_{\mathcal{K}}$ given by linear independence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Stability theory
 Independence relations
 Categorical approach
 Lifting independence
 References

 Lifting independence
 Concrete example
 Concrete example
 Concrete example
 Concrete example

Fix a field K and consider **Bil**_K, the category of bilinear spaces over K with injective bilinear morphisms (i.e., injective linear maps that respect the bilinear form).

Let $\mathbf{Vec}_{\mathcal{K}}$ be the category of vector spaces over \mathcal{K} with injective linear maps and recall that we had an independence relation \bigcup on $\mathbf{Vec}_{\mathcal{K}}$ given by linear independence.

The canonical independence relation on $\mathbf{Bil}_{\mathcal{K}}$ turns out to be same. That is, given by linear independence.

 Stability theory
 Independence relations
 Categorical approach
 Lifting independence
 References

 Lifting independence
 Concrete example - categorical perspective
 Categorical approach
 Lifting independence
 References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Write $F : \mathbf{Bil}_K \to \mathbf{Vec}_K$ for the forgetful functor.

 Stability theory
 Independence relations
 Categorical approach
 Lifting independence
 References

 Lifting independence
 Concrete example - categorical perspective
 Concrete example - categorical perspective
 Concrete example - categorical perspective

Write $F : \mathbf{Bil}_{\mathcal{K}} \to \mathbf{Vec}_{\mathcal{K}}$ for the forgetful functor.

Rephrasing the previous slide: the square below on the left (in $Bil_{\mathcal{K}}$) is independent iff the square below on the right (in $Vec_{\mathcal{K}}$) is independent.

Independence relations

Categorical approach

Lifting independence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lifting independence Basics

Definition

Let $F : \mathcal{C} \to \mathcal{D}$ be a functor and let \bigcup be an independence relation on \mathcal{D} . We define the *lift* $F^{-1}(\bigcup)$ of \bigcup along F as follows. A commuting square in \mathcal{C} is $F^{-1}(\bigcup)$ -independent if and only if its image under F is \bigcup -independent.

Independence relations

Categorical approach

Lifting independence

Lifting independence Basics

Definition

Let $F : \mathcal{C} \to \mathcal{D}$ be a functor and let \bigcup be an independence relation on \mathcal{D} . We define the *lift* $F^{-1}(\bigcup)$ of \bigcup along F as follows. A commuting square in \mathcal{C} is $F^{-1}(\bigcup)$ -independent if and only if its image under F is \bigcup -independent.

Question: what properties of \bigcup does $F^{-1}(\bigcup)$ inherit? What (reasonable) assumptions can we place on F to add more properties to this list?

Lifting independence Basics

Definition

Let $F : \mathcal{C} \to \mathcal{D}$ be a functor and let \bigcup be an independence relation on \mathcal{D} . We define the *lift* $F^{-1}(\bigcup)$ of \bigcup along F as follows. A commuting square in \mathcal{C} is $F^{-1}(\bigcup)$ -independent if and only if its image under F is \bigcup -independent.

Question: what properties of \bigcup does $F^{-1}(\bigcup)$ inherit? What (reasonable) assumptions can we place on F to add more properties to this list?

Proposition

Any functor will lift the properties invariance, monotonicity, symmetry, transitivity and basic existence.

Independence relations

Categorical approach

Lifting independence

References

Lifting independence Accessibility and union

Definition

Let \bigcup be an independence relation on a category C. If \bigcup satisfies transitivity and basic existence then we can form the subcategory C_{\bigcup} of C^2 with the same objects, but whose morphisms are restricted to \bigcup -independent squares. We then say that:

・ロト・日本・日本・日本・日本・日本

Independence relations

Categorical approach

Lifting independence

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lifting independence Accessibility and union

Definition

Let \bigcup be an independence relation on a category $\mathcal{C}.$ If \bigcup satisfies transitivity and basic existence then we can form the subcategory \mathcal{C}_{\bigcup} of \mathcal{C}^2 with the same objects, but whose morphisms are restricted to \bigcup -independent squares. We then say that:

• \bigcup is accessible if \mathcal{C}_{\bigcup} is an accessible category,

Independence relations

Categorical approach

Lifting independence

References

Lifting independence Accessibility and union

Definition

Let \bigcup be an independence relation on a category $\mathcal{C}.$ If \bigcup satisfies transitivity and basic existence then we can form the subcategory \mathcal{C}_{\bigcup} of \mathcal{C}^2 with the same objects, but whose morphisms are restricted to \bigcup -independent squares. We then say that:

- \bigcup is accessible if \mathcal{C}_{\bigcup} is an accessible category,

Independence relations

Categorical approach

Lifting independence

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lifting independence Accessibility and union

Theorem

Let $F : C \to D$ be a directed colimit preserving functor between accessible categories with directed colimits. Suppose that \bigcup is an independence relation on D satisfying transitivity and basic existence.

Independence relations

Categorical approach

Lifting independence

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lifting independence Accessibility and union

Theorem

Let $F : C \to D$ be a directed colimit preserving functor between accessible categories with directed colimits. Suppose that \bigcup is an independence relation on D satisfying transitivity and basic existence.

• If \bigcup satisfies union then so does $F^{-1}(\bigcup)$.

Independence relations

Categorical approach

Lifting independence

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lifting independence Accessibility and union

Theorem

Let $F : C \to D$ be a directed colimit preserving functor between accessible categories with directed colimits. Suppose that \bigcup is an independence relation on D satisfying transitivity and basic existence.

- If \bigcup satisfies union then so does $F^{-1}(\bigcup)$.
- If ⊥ satisfies union and is accessible then the same holds for F⁻¹(⊥).

Independence relations

Categorical approac

Lifting independence

References

Lifting independence

All properties

	Stable	Simple	$NSOP_1$ -like
Invariance	\checkmark	\checkmark	\checkmark
Monotonicity	\checkmark	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark
Transitivity	\checkmark	\checkmark	\checkmark
Basic existence	\checkmark	\checkmark	\checkmark
Union	\checkmark	\checkmark	\checkmark
Accessible	\checkmark	\checkmark	\checkmark
Existence	\checkmark	\checkmark	\checkmark
3-amalgamation	\checkmark	\checkmark	\checkmark
Base monotonicity	\checkmark	\checkmark	
Uniqueness	\checkmark		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

Independence relations

Categorical approach

Lifting independence

References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lifting independence Lifting uniqueness (attempt)

Proposition

If $F : C \to D$ is a left multiadjoint and \bigcup is an independence relation on D that satisfies uniqueness then $F^{-1}(\bigcup)$ satisfies uniqueness.

Independence relations

Categorical approach

Lifting independence

References

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lifting independence Lifting uniqueness (attempt)

Proposition

If $F : C \to D$ is a left multiadjoint and \bigcup is an independence relation on D that satisfies uniqueness then $F^{-1}(\bigcup)$ satisfies uniqueness.

Left (multi)adjoints that look like forgetful functors are rare, definitely between AECats.
Stability theory 00000000000
 Independence relations 000
 Categorical approach 0000
 Lifting independence 000000000000
 References

 Lifting independence
 Categorical approach
 Lifting independence
 References

Left (multi)adjoints between bigger categories

Often left (multi)adjoints are functors between bigger categories.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Stability theory
 Independence relations
 Categorical approach
 Lifting independence
 References

 Lifting independence
 Left (multi)adjoints between bigger categories
 References

Often left (multi)adjoints are functors between bigger categories.

For example the forgetful $\mathbf{Ab}^M \to \mathbf{Ab}$, where M is a monoid, is left adjoint.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Stability theory
 Independence relations
 Categorical approach
 Lifting independence
 References

 Lifting independence
 Left (multi)adjoints between bigger categories
 References
 References

Often left (multi)adjoints are functors between bigger categories.

For example the forgetful $\mathbf{Ab}^M \to \mathbf{Ab}$, where M is a monoid, is left adjoint.

Meanwhile, \mathbf{Ab}_{mono} carries a stable independence relation given by pullback squares.

 Stability theory
 Independence relations
 Categorical approach
 Lifting independence
 References

 Lifting independence
 Left (multi)adjoints between bigger categories
 References
 References

Often left (multi)adjoints are functors between bigger categories.

For example the forgetful $\mathbf{Ab}^M \to \mathbf{Ab}$, where M is a monoid, is left adjoint.

Meanwhile, \mathbf{Ab}_{mono} carries a stable independence relation given by pullback squares.

The forgetful $Ab^M \rightarrow Ab$ restricts to $Ab^M_{mono} \rightarrow Ab_{mono}$, and the latter lifts uniqueness, as is seen by temporarily working in the bigger categories.

(ロ)、

Stability theory

Independence relations

Categorical approach

Lifting independence

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lifting independence

Theorem

Let $F : \mathcal{C} \to \mathcal{D}$ be a left multiadjoint and let \mathcal{M} be a left-cancellable composable class of arrows in \mathcal{D} . If \bigcup is an independence relation on $\mathcal{D}_{\mathcal{M}}$ that satisfies uniqueness then the independence relation $F^{-1}(\bigcup)$ on $\mathcal{C}_{F^{-1}(\mathcal{M})}$ satisfies uniqueness.

Stability theory

Independence relations

Categorical approach

Lifting independence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lifting independence

Theorem

Let $F : C \to D$ be a faithful left multiadjoint and let \mathcal{M} be a left-cancellable composable accessible and continuous class of monomorphisms in \mathcal{D} . Suppose that \bigcup is an independence relation on $\mathcal{D}_{\mathcal{M}}$, that satisfies semi-invariance as an independence relation on \mathcal{D} .

- If $\ \$ is stable then $F^{-1}(\ \)$ is stable.
- If ⊥ is simple, C_{F⁻¹(M)} and D_M have binary joins of subobjects and F preserves those then then F⁻¹(⊥) is simple.
- If $\ \ is \ NSOP_1$ -like then $F^{-1}(\ \)$ is $NSOP_1$ -like.

Stability theory

Independence relations

Categorical approach

Lifting independence

Lifting independence

Theorem

Let $F : C \to D$ be a faithful left multiadjoint and let \mathcal{M} be a left-cancellable composable accessible and continuous class of monomorphisms in \mathcal{D} . Suppose that \bigcup is an independence relation on $\mathcal{D}_{\mathcal{M}}$, that satisfies semi-invariance as an independence relation on \mathcal{D} .

- If $\ \$ is stable then $F^{-1}(\ \)$ is stable.
- If ⊥ is simple, C_{F⁻¹(M)} and D_M have binary joins of subobjects and F preserves those then then F⁻¹(⊥) is simple.
- If $\ \ is \ NSOP_1$ -like then $F^{-1}(\ \)$ is $NSOP_1$ -like.

There is a second flavour of conditions on F in our preprint (Kamsma and Rosický [2024]) that gives a similar conclusion.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

References

- Mark Kamsma. The Kim-Pillay theorem for Abstract Elementary Categories. *The Journal of Symbolic Logic*, 85(4):1717–1741, December 2020.
- Mark Kamsma and Jiří Rosický. Lifting independence along functors, November 2024. arXiv:2411.14813.
- Michael Lieberman, Jiří Rosický, and Sebastien Vasey. Forking independence from the categorical point of view. *Advances in Mathematics*, 346:719–772, April 2019.