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Quillen model categories are a very convenient way to organise a “Homotopy theories”.

But simplicial model categories are often more convenient. For example, If C is a simplicial
model category, then the simplicial category of bifibrant object is directly a model for the
Dwyer-Kan localization of C, i.e. the ∞-category modeled by C.

Simplicial completion is a process to turn a general model category C into a simplicial one. This
is done by considering the category sC of simplicial objects in C.
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Theorem (Dugger)

If C is a left proper combinatorial Quillen model category, then the category sC of simplicial
objects of C has a simplicial model structure such that:

The constant object functor C → sC is a left Quillen equivalence.
Any left Quillen functor C → D with D a simplicial model category can be factored
uniquely into a simplicial left Quillen functor C → sC → D.
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Let’s quickly explain how this works:

First, sC is a simplicially enriched, tensored and cotensored category:

(A⊗ X )k = Ak × Xk =
∐
Ak

Xk (A ∈ sSet, and X ∈ sC )

Hom∆̂(X ,Y )k =

∫
[n]∈∆

Hom (X ([n]),Y ([n]))∆([n],[k]) Y A =

∫
[n]∈∆

Y ([n])A([n])

We will identify C with the subcategory of sC of constant objects.
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The class of cofibrations and trivial cofibrations of sC are generated by the cofibrations and
trivial cofibrations of C ,

but as a simplicial model category, that is we need the following maps
as generators:

Generating cofibrations:

∂∆[n]⊗ B
∐

∂∆[n]⊗A

∆[n]⊗ A → ∆[n]⊗ B

For A → B any (generating) cofibration of C .
(Pseudo) Generating trivial cofibrations:

∂∆[n]⊗ B
∐

∂∆[n]⊗A

∆[n]⊗ A → ∆[n]⊗ B

for A → B a (generating) trivial cofibration of C and

Λk [n]⊗ B
∐

Λk [n]⊗A

∆[n]⊗ A → ∆[n]⊗ B

For A → B a (generating) cofibration of C .
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Key point of the proof of Dugger’s theorem:

If we drop the second familly of of the trivial cofibrations, and only keep the generators of the
form

∂∆[n]⊗ B
∐

∂∆[n]⊗A

∆[n]⊗ A → ∆[n]⊗ B

What we get is exactly the Reedy model structure on sC = C∆op
.

The model structure on sC is constructed as a left Bousfield localization of the Reedy model
structure whose local objects are the Reedy fibrant homotopically constant diagram ∆op → C .
It is easy to see that this is Quillen equivalent to C .
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In the previous arguement, the only reason we need C to be left proper, is in order to use the
theory of Bousfield localization.

But Barwick and Batanin - White have shown that if we use
“left semi-model categories”, then the theory of Bousfield localization works without the
properness assumption. So we get:

Theorem (Dugger + Barwick, Batanin - White )

If C is a combinatorial Quillen model category, then the category sC of simplicial objects of C
has a simplicial left semi-model structure such that:

The constant object functor C → sC is a left Quillen equivalence.
Any left Quillen functor C → D with D a simplicial left semi-model category can be
factored uniquely into a simplicial left Quillen functor C → sC → D.
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Definition (Barton)

A Premodel category is a complete and cocomplete category with two weak factorization
systems (cofibrations, anodyne fibrations) and (anodyne cofibrations, fibrations),

such that
anodyne (co)fibrations are (co)fibrations.

Combinatorial premodel categories and Quillen functors between premodel cateogires are
defined in the same way as as for Quillen model categories.

Premodel category are in general not homotopy theoretic objects. But maybe surprisingly, their
simplicial completion is:

Theorem (Folk?)

If C is a combinatorial premodel category, then the category sC of simplicial objects of C has a
simplicial left semi-model structure such that:

The constant object functor C → sC is a left Quillen equivalence functor.
Any left Quillen functor C → D with D a simplicial left semi-model category can be
factored uniquely into a simplicial left Quillen functor C → sC → D.
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This leads to the main question we wanted to answer:

If C is a model category, then we know
what sC models: it is Quillen equivalent to C . But for a premodel C , then sC is a brand new
model category. We want to understand what it models.

Theorem (H. - L. S.)

Let C be a κ-combinatorial premodel category. Let Cofκ C be the category of κ-presentable
cofibrant objects. Then the ∞-category associated to sC is equivalent to the ∞-category of
functors F : (Cofκ C )op → Space such that

1 F sends the initial object to {∗}.
2 F sends pushout along cofibrations to pullback.
3 F sends κ-small transfinite composition of cofibration to limits.
4 F sends anodyne cofibrations to weak equivalences.
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A “generalized algebraic theory” in the sense of Cartmell is a kind of multi-sorted algebraic
theory where the type/sort can depends on variable taken from other sorts.

Example

The Generalized algebraic theory (GAT) of categories:

Type axioms:

⊢ Ob Type x , y : Ob ⊢ Hom(x , y) Type

Term axioms: x : Ob ⊢ Idx : Hom(x , x)

x , y , z : Ob; f : Hom(x , y); g : Hom(y , z) ⊢ g ◦x ,y ,z f : Hom(x , z))

Term Equality axioms:

x , y : Ob; f : Hom(x , y) ⊢ f ◦x ,x ,y Idx = f x , y : Ob; f : Hom(x , y) ⊢ Idy ◦x ,y ,y f = f

w , x , y , z : Ob; f : Hom(w , x); g : Hom(x , y); k : Hom(y , z) ⊢ k ◦ (g ◦ f ) = (k ◦ g) ◦ f
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Given such a theory T , we can form a syntactic category CT of T , whose objects are “context”
and whose morphism are definable “function” between such context up to provable equality

Example

∆ = (a, b : Ob; v : Hom(a, b)

Γ = (x , y , z : Ob; g , f : Hom(x , y); h : Hom(y , x); k : Hom(z , x))

are contexts.
Γ → ∆

(x , y , z , g , f , h, k) 7→ (z , y , f ◦ k)

is a context morphism.
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This category CT has a special class of maps that I will call “display maps” that corresponds to
just forgetting the last variable from the context. For example:

∆ → (a, b : Ob)
(a, b, v) 7→ (a, b)

These maps are closed under pullbacks.

Theorem (Cartmell)

The category of models of T is equivalent to the category of functor CT → Set preserving the
terminal object and pullback along display maps.
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In particular, the Yoneda embedding define a fully faithful functor
Y : C op

T → Mod(T ) ⊂ Fun(CT , Set).

We consider the weak factorization on Mod(T ) cofibrantly generated by the map
Y (A) → Y (B) for B ↠ A a display map.

We call the left class “cofibrations” and the right class “Anodyne fibrations”.

We see Mod(T ) as a premodel category, with anodyne cofibration being the isomorphisms and
all maps being fibrations.

The category Cofω(Mod(T )) of finitely presentable cofibrant objects in Mod(T ) is equivalent
to (the Cauchy completion) C op

T .
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We get a (left semi) model structure sMod(T ) using simplicial completion:

1 The underlying category is the category of simplicial models.
2 The fibrant objects are models where each dependent is interpreted as a Kan fibration

(between Kan complexes).
3 Equivalently, fibrant objects are the simplicial models CT → sSet which takes values in

Kan complexes and send each display map to a Kan fibration. (So all pullbacks appearing
in the definition of pullbacks are pullback of fibrations)

4 Weak equivalence between fibrant objects are the levelwise weak equivalences.
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We can apply our main theorem to this premodel category Mod(T ). We obtain:

Theorem (H. - L. S.)

The localization of the model category sMod(T ) of strict simplicial model of T at weak
equivalence is equivalent to the ∞-category of weak models of T .

Where a “weak model” is a (pseudo) functor CT → Spaces that preserve the terminal objects
sends pullback of display map to (homotopy) pullbacks.
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When T is a Lawvere theory (all type are non-dependant), we recover a Theorem of Badzioch:
Any weak model of A Lawvere theory is homotopically equivalent to a Kan complex with a
strict T -model structure. For example:

Example

The ∞-category of simplicial abelian groups is equivalent to the ∞-category of (weak) model
of the Lawvere theory of Abelian groups. Note that these are not the same as the (weak)

models of the commutative operads (i.e. E∞-algebras).
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Example

Taking T the theory of category mentioned before sMod(T ) is a Model structure on simplicial
categories whose fibrant objects are simplicial categories C where the simplicial set of objects
C0 is a Kan complex and the map C1 → C0 × C0 is a Kan fibration.

bigskip
This model structure is Quillen equivalent to the one for (non-complete) Segal spaces, but that
does not follow immediately from our theorem.

The previous theorem say that it is equivalent to a certain category of functor CT → Space,
but C op

T ̸= ∆.

C op
T is the full subcategory of Cat of categories that are free on graphs (so it contains ∆).

And the functors we consider are the one that satisfies an analogue of the Segal conditions
(their value on any graph is recovered as a limit of F (∆[0]) and F (∆[1]) over all verticies and
edge of the graph).
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In general, the theorem tell you in ∞-categorical language what the the homotopy theory of
strict model actually is.

But generally not in a convenient way. The hard part is to compare the notion of “weak model”
produced by the theorem with the kind of weak structure we want.
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To solve this sort of problem, we have a more precise version of the theorem,

where we can
input a proposed notion of weak models.

Let C be a κ-combinatorial premodel category and D ⊂ Cofκ(C ) a full subcategory. We have a
Realization-Nerve adjunction:

R : D̂ ⇆ C : ND

which extend to a simplicial Quillen adjunction

R : sD̂Proj ⇆ sC : ND

We want “weak models” to be modeled by a specific Bousfield localization of sD̂Proj, and figure
out nice conditions under which strict and weak model are equivalent.

Example

Take C = Mod(Cat) and D = ∆ (seen as a dense full subcategory of categories). And the
localization s∆̂Segal

Proj .

S.Henry uOttawa Simplicial completion of premodel categories - j. w/ Leena Subramaniam 12-18 19 / 23



To solve this sort of problem, we have a more precise version of the theorem, where we can
input a proposed notion of weak models.

Let C be a κ-combinatorial premodel category and D ⊂ Cofκ(C ) a full subcategory. We have a
Realization-Nerve adjunction:

R : D̂ ⇆ C : ND

which extend to a simplicial Quillen adjunction

R : sD̂Proj ⇆ sC : ND

We want “weak models” to be modeled by a specific Bousfield localization of sD̂Proj, and figure
out nice conditions under which strict and weak model are equivalent.

Example

Take C = Mod(Cat) and D = ∆ (seen as a dense full subcategory of categories). And the
localization s∆̂Segal

Proj .

S.Henry uOttawa Simplicial completion of premodel categories - j. w/ Leena Subramaniam 12-18 19 / 23



To solve this sort of problem, we have a more precise version of the theorem, where we can
input a proposed notion of weak models.

Let C be a κ-combinatorial premodel category and D ⊂ Cofκ(C ) a full subcategory. We have a
Realization-Nerve adjunction:

R : D̂ ⇆ C : ND

which extend to a simplicial Quillen adjunction

R : sD̂Proj ⇆ sC : ND

We want “weak models” to be modeled by a specific Bousfield localization of sD̂Proj, and figure
out nice conditions under which strict and weak model are equivalent.

Example

Take C = Mod(Cat) and D = ∆ (seen as a dense full subcategory of categories). And the
localization s∆̂Segal

Proj .

S.Henry uOttawa Simplicial completion of premodel categories - j. w/ Leena Subramaniam 12-18 19 / 23



To solve this sort of problem, we have a more precise version of the theorem, where we can
input a proposed notion of weak models.

Let C be a κ-combinatorial premodel category and D ⊂ Cofκ(C ) a full subcategory. We have a
Realization-Nerve adjunction:

R : D̂ ⇆ C : ND

which extend to a simplicial Quillen adjunction

R : sD̂Proj ⇆ sC : ND

We want “weak models” to be modeled by a specific Bousfield localization of sD̂Proj, and figure
out nice conditions under which strict and weak model are equivalent.

Example

Take C = Mod(Cat) and D = ∆ (seen as a dense full subcategory of categories). And the
localization s∆̂Segal

Proj .

S.Henry uOttawa Simplicial completion of premodel categories - j. w/ Leena Subramaniam 12-18 19 / 23



To solve this sort of problem, we have a more precise version of the theorem, where we can
input a proposed notion of weak models.

Let C be a κ-combinatorial premodel category and D ⊂ Cofκ(C ) a full subcategory. We have a
Realization-Nerve adjunction:

R : D̂ ⇆ C : ND

which extend to a simplicial Quillen adjunction

R : sD̂Proj ⇆ sC : ND

We want “weak models” to be modeled by a specific Bousfield localization of sD̂Proj, and figure
out nice conditions under which strict and weak model are equivalent.

Example

Take C = Mod(Cat) and D = ∆ (seen as a dense full subcategory of categories). And the
localization s∆̂Segal

Proj .

S.Henry uOttawa Simplicial completion of premodel categories - j. w/ Leena Subramaniam 12-18 19 / 23



To solve this sort of problem, we have a more precise version of the theorem, where we can
input a proposed notion of weak models.

Let C be a κ-combinatorial premodel category and D ⊂ Cofκ(C ) a full subcategory. We have a
Realization-Nerve adjunction:

R : D̂ ⇆ C : ND

which extend to a simplicial Quillen adjunction

R : sD̂Proj ⇆ sC : ND

We want “weak models” to be modeled by a specific Bousfield localization of sD̂Proj, and figure
out nice conditions under which strict and weak model are equivalent.

Example

Take C = Mod(Cat) and D = ∆ (seen as a dense full subcategory of categories). And the
localization s∆̂Segal

Proj .

S.Henry uOttawa Simplicial completion of premodel categories - j. w/ Leena Subramaniam 12-18 19 / 23



We also assume that C is κ-combinatorial and that it has a set of generating cofibration in D.

Theorem (H. - L. S.)

In the situation above, Then given S a set of maps in sD̂, the functors R and ND induces a
Quillen equivalence between sC and the localization sD̂S-Loc

Prof if and only if:

All maps in S are sent to ismorphism by the derived functor R : D̂ → Ho(sC ).
(Equivalently, each fibrant object of sC is sent by ND to an S-local object).
The restriction of ND to Cofκ(C ):

1 Sends pushout of generating cofibrations to homotopy pushouts in sD̂S-Loc
Prof .

2 Sends the initial object to a homotopically initial objects of sD̂S-Loc
Prof .

3 Sends κ-small transfinite to homotopy colimits.
4 Sends the generating anodyne cofibrations of sC to weak equivalences in sD̂S-Loc

Prof .
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Comming back to our example of categories:

Example

By the previous theorem, in order to show that the model category sMod(Cat) is equivalent to
the one for Segal spaces,

we only need to show that given a graph G , then the pushout
corresponding to add an arrow (or an object) to the free category on G is a homotopy pushout
in the model category of Segal spaces.
This is not trivial, but is well known.
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Example

Simpson’s Semi-strictification conjecture says that one can represent weak (∞, n)-categories
using “semi-strict” (∞, n)-category where both associativity and exchange law are strict, but
unit law are weak.

Using the above, we can phrase a model independant version of the
conjecture:

Conjecture

For any (strict) “positive” polygraphs/computads X (that is where each generators is glued on
cell that are not identities) the pushouts corresponding to adding a new cell to X is a
homotopy pushout of weak (∞,∞)-categories.

A version of this in the special case of “pasting diagrams” (instead of all positive polygraphs)
has been established last year by Tim Campion.
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I’m concluding with one more example of the first theorem which I think is of interest,

or
maybe just confusing.

Example

Take C to be the (1-)category of strict n-categories.

Inside of C we have Joyal “Disks” category Θn ⊂ C . We Consider the premodel structure C
cofibrantly generated by the map ∅ → X for X ∈ Θn (and no anodyne cofibrations).

Then the simplicial completion sC is equivalent to the category of Θn-spaces.

In particular, there is a Bousfield localization of sC (i.e. strict simplicial n-categories) which
models weak (∞, n)-categories. The case n = 1 is exactly Horel’s model structure on simplicial
categories.

All of this works more generally when C is an extensive category and Θ is replaced by any set
of connected objects.
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