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Part I : Functorial Semantics



Algebraic theories

Algebraic theories are given given by sorts, generators generators and equations.

• Theory TMon of monoids:

⊢ M
⊢ e : M

x y : M ⊢ x · y : M
x : M ⊢ e · x = x · e = x

x y z : M ⊢ (x · y) · z = x ·(y · z)

• Theory TGph of graphs
⊢ V
⊢ E

x : E ⊢ s(x) : V
x : E ⊢ t(x) : V



Syntactic category

Definition

The syntactic category C[T] of an algebraic theory T is given as follows:

• Objects are contexts, i.e. lists (x1 : S1, . . . xn : Sn) of sorted variables.

• Morphisms from (x1:S1, . . . , xn:Sn) to (y1:T1, . . . , yk :Tk) are k-tuples of equivalence classes of
terms in variables x1, . . . , xn modulo equations.

• Composition is given by subsitution.

Theorem (Lawvere)

C[T] has finite products (given by concatenation), and the models of T (in Set) correspond to
finite-product preserving functors from C[T] to Set:

Mod(T) ≃ FP(C[T],Set)



Lawvere theories and finite-product theories
If T is single-sorted (e.g. TMon) then contexts are fully determined by their length (up to renaming of
variables), and the objects of C[T] are finite powers of a single generating object. In this case we
speak of a Lawvere theory.

More generally we define:

Definition

• A finite-product theory is a small category C with finite products.

• A model of a finite-product theory C is a finite-product preserving functor C → Set.

Mod(C) := FP(C,Set)
full
⊆ [C,Set]

This makes sense since one can show that every finite-product category C is equivalent to the
syntactic category of an algebraic theory (possibly with infinitely many generators and relations).

Every finite-product theory contravariantly embeds into its models:

Cop

Mod(C) [C,Set]

H
よ

⊆



Finite-limit theories

There are classes of ‘essentially’ algebraic structures that cannot be represented as models of
finite-product theories, most notably categories.
The problem is that composition in a category is not defined for arbitary pairs of arrows: the set of
composable pairs is not given by a product but by a pullback! This motivates the following:

Definition

• A finite-limit theory is a small category with finite limits

• a model of a finite-limit theory is a finite-limit preserving functor A : C → Set

Like finite-product theories, finite-limit theories embed contravariantly into their models

Cop

Mod(C) [C,Set]
Z

よ

⊆

,

and in this case, the essential image of Z admits a straightforward generalizations!



Duality for finite-limit theories (Gabriel-Ulmer duality1)

Proposition

Let C be a finite-limit theory.

1. A model A ∈ Mod(C) is representable by an object of C iff it is compact, i.e. Mod(C)(A,−)
preserves filtered colimits.

2. The category Mod(C) = FP(C,Set) is locally finitely presentable, i.e. cocomplete with a dense
set of compact objects.

Theorem

There is a contravariant bi-equivalence of 2-categories

FL
{compact objects}op ← [ X←−−−−−−−−−−−−−−−−−→
L 7→ Mod(L) := FL(L,Set)

LFPop.

between the 2-category FL of small finite-limit theories, and the 2-category LFP of locally finitely
presentable categories.

1 P. Gabriel and F. Ulmer (1971). Lokal präsentierbare Kategorien. Springer-Verlag.



Duality for finite-product theories2

There’s a ‘restriction’ of G–U duality to finite-product theories (corresponding to many-sorted
ordinary algebraic theories):

FPcc ALGop

FL LFPop

C 7→ FP(C,Set)
{compact projectives}op ← [ X

F JU⊣
L 7→ FL(L,Set)

{compact objects}op ← [ X

• FPcc is the 2-category of Cauchy-complete finite-product categories

• ALG is the 2-category of algebraic categories and algebraic functors

An algebraic category is an l.f.p. category which is Barr-exact and where the compact (regular)
projective objects are dense
An algebraic functor is a functor that preserves small limits, filtered colimits, and regular
epimorphisms.

sifted colimits

• Clan-duality can be viewed as a refinement of GU-duality which allows to control the amount of
limit-preservation in the models

2 J. Adámek, J. Rosický, and E.M. Vitale (2010). Algebraic theories: a categorical introduction to general algebra.
Cambridge University Press.



GATs and Clans



Toward clans

• Finite-limit theories have a nice duality theory but seem far from syntax

• Syntactic counterparts are given by

Freyd’s essentially algebraic theories3

Cartmell’s generalized algebraic theories4 (or ‘dependent algebraic theories’)
Johnstone’s cartesian theories5

Palmgren and Vickers’ quasi-equational theories6

and probably others

• Clans can be viewed as a categorical representation of generalized algebraic theories

• They’re as expressive as FL-theories, but ‘finer’, i.e. closer to syntax

3 P. Freyd (1972). “Aspects of topoi”. Bulletin of the Australian Mathematical Society.
4 J. Cartmell (1986). “Generalised algebraic theories and contextual categories”. Annals of Pure and Applied Logic.
5 P.T. Johnstone (2002). Sketches of an elephant: a topos theory compendium. Vol. 2. Oxford: Oxford University

Press.
6 E. Palmgren and S. J. Vickers (2007). “Partial horn logic and Cartesian categories”. Annals of Pure and Applied

Logic.



Generalized Algebraic Theories

Generalized Algebraic Theories7 can have ‘sort dependencies’. For example:

John Cartmell
The GAT of families of pointed sets:

⊢ A
x : A ⊢ B(x)
x : A ⊢ p(x) : B(x)

The GAT rGph∗ of reflexive graphs:

⊢ V
x y : V ⊢ E (x , y)
x : V ⊢ r(x) : E (x , x)

The GAT TCat of categories:

⊢ O
x y : O ⊢ A(x , y)
x : O ⊢ id(x) : A(x , x)

x y z : O , f : A(x , y) , g : A(y , z) ⊢ g◦f : A(x , z)
x y : O , f : A(x , y) ⊢ id(y)◦f = f
x y : O , f : A(x , y) ⊢ f ◦id(x) = f

w x y z : O , e : A(w , x) ,
f : A(x , y) , g : A(y , z) ⊢ (g◦f )◦e = g◦(f ◦e)

7 J. Cartmell (1978). “Generalised algebraic theories and contextual categories”. available at
https://ncatlab.org/nlab/files/Cartmell-Thesis.pdf. PhD thesis. Oxford University
J. Cartmell (1986). “Generalised algebraic theories and contextual categories”. Annals of Pure and Applied Logic

https://ncatlab.org/nlab/files/Cartmell-Thesis.pdf


The GAT of semisimplicial sets/ojects

⊢ A0

x0 x1 : A0 ⊢ A1(x0, x1)
x0 x1 x2 : A0 , x01 : A1(x0, x1) , x02 : A1(x0, x2) , x12 : A1(x1, x2) ⊢ A2(x01, x02, x12)

. . . ⊢ . . .

More generally, we can write such a GAT consisting only of type declaration for any direct locally
finte category.

Definition

a category D is called direct, if it does not admit an infinite inverse chain

A0 ← A1 ← A2 ← . . .

of non-identity arrows.



Syntactic category of a GAT
GATs also have a syntactic category C[T] of contexts and substitutions, but now contexts may be
dependent: (

x1:S1, x2:S2(x1), . . . , xn:S(x1, . . . , xn−1)
)

and similarly for substitutions.

Syntactic categories of GATs are contextual categories (Cartmell), and in particular clans:

Definition (Taylor 1987, Joyal 2017)

Clan: small category T with 1, and class T† ⊆ mor(T ) of ‘display maps’ (written _) such that

1. pullbacks of display maps along all maps exist and are display maps
∆+

⌟
Γ+

∆ Γ

s+

q p

s

,

2. display maps are closed under composition, and

3. terminal projections Γ _ 1 are display maps.

The display maps in C[T] are dependent projections(
x1:S1, x2:S2(x1), . . . , xn:S(x1, . . . , xn−1) . . . , xn+k :S(x1, . . . , xn+k−1)

)
_
(
x1:S1, x2:S2(x1), . . . , xn:S(x1, . . . , xn−1)

)
from longer to shorter contexts (closed under isos).



Examples

• Finite-product theories C can be viewed as clans with C† = {product projections} (‘FP-clans’)
• Finite-limit theories L can be viewed as clans with L† = mor(L) (‘FL-clans’)
• For D direct locally finite, its finite cocompletion [Dop,Fin] is a coclan, with monomorphisms as

co-display maps8.

8This is stated in terms of contextual categories in : C. Leena Subramaniam (Oct. 2021). “From dependent type
theory to higher algebraic structures”. and also mentioned in M. Makkai (1995). “First order logic with dependent
sorts, with applications to category theory”. Preprint.



Models

Definition

A model of a clan T is a functor A : T → Set which preserves 1 and pullbacks of display-maps.

• The category Mod(T ) ⊆ [T ,Set] of models is l.f.p. and contains T op.

T op

Mod(T ) [T ,Set]

よ

⊆

• For FP-clans (C, C†) we have Mod(C, C†) = FP(C,Set).
• For FL-clans (L,L†) we have Mod(L,L†) = FL(L,Set).
• For clans CD = [Dop,Fin]op arising from direct locally finite categories, we have

Mod(CD) = [Dop,Set].



The clan of categories

• The syntactic category C[TCat] of the GAT TCat has contexts

(x1 . . . xn : O, f1 : A(xi1 , xj1), . . . fk : A(xik , xjk ))

as objects, and substitutions as morphisms.

• As for any clan, we have the Yoneda embedding

よ : C[TCat]
op −→ Mod(C[TCat]) ≃ Cat.

• Its image is the full subcategory of Cat on free categories on finite graphs.

• Display maps correspond (contravariantly) to graph inclusions

• Compare: the finite-limit theory LCat of categories is identified by Yoneda with the larger
subcategory of finitely presentable (compact) categories.

Lop
Cat

∼=−→ {f.p. categories} ⊆ Cat



Towards duality for clans

• Note that the different clans can have the same category of Set-models

• For example, algebraic theories give rise to clans either as finite-product theories or as finite-limit
theories

• To get a duality theory for clans, have to refine Gabriel–Ulmer duality.

• We do this by equipping the categories of models with additional data in form of a weak
factorization system



The extension–full weak factorization system

Definition

Let T be a clan andよ : T op → Mod(T ). Define w.f.s. (E ,F) on Mod(T ):

F = RLP(よ(T †)) ‘full maps’

E = LLP(F) ‘extensions’

Call A ∈ Mod(T ) a 0-extension, if (0→ A) ∈ E .

• Representable modelsよ(Γ) = T (Γ,−) are 0-extensions since all Γ _ 1 are display maps.

• The same weak factorization system was also introduced by Henry9, who called coclans
cofibration categories.

• In the case of direct locally finite categories D, the w.f.s. on [Dop,Set] is cofibrantly generated by
boundary inclusions ∂d ↪→ y(d), and Makkai10 uses the term very surjective for the right class.

• For general clans, the full maps are those whose display-naturality squares are weak pullbacks,
in particular full maps are always regular epimorphisms.

9 S. Henry (2016). “Algebraic models of homotopy types and the homotopy hypothesis”. arXiv:1609.04622.
10 M. Makkai (1995). “First order logic with dependent sorts, with applications to category theory”. Preprint.



Examples

• If T is a FL-clan, then

only isos are full in Mod(T ), and
all maps are extensions.

• If T is a FP-clan, then

Mod(T ) is Barr-exact,
the full maps are the regular epis, and
the 0-extensions are the projective objects.

• In Cat = Mod(TCat):

full maps are functors that are full and surjective on objects,
and 0-extensions are free categories.



Duality for clans

Theorem (F)

There is a contravariant bi-equivalence of 2-categories

Clancc
CZE(X)op ←[ X←−−−−−−−−−−−→
T 7→ Mod(T )

cAlgop

where

• Clancc is the 2-category of Cauchy-complete11 clans,

• cAlg is the 2-category of clan-algebraic categories, i.e. l.f.p. categories X equipped with an
‘extension/full’ WFS (E ,F) such that

1. the full subcategory CZE(X) ⊆ X on compact 0-extensions is dense in X,
2. (E ,F) is cofibrantly generated by maps in CZE(X), and
3. X has full and effective quotients of componentwise-full equivalence relations.

As special cases for FL-clans and FP-clans we recover

• Gabriel–Ulmer duality, and

• Adamek–Rosicky–Vitale’s characterization of algebraic categories as Barr-exact LFP categories
which are generated by compact projectives12.

11A clan T is Cauchy-complete if idempotents split in T , and retracts of display maps are display maps.
12Theorem 9.15 in J. Adámek, J. Rosický, and E.M. Vitale (2010). Algebraic theories: a categorical introduction to

general algebra. Cambridge University Press



Proof sketch

• Have to show that:

1. Mod(T ) is clan-algebraic for all clans T .
2. CZE(X)op is a clan for all clan-algebraic categories X (with extensions as display maps).
3. CZE(X)op-Mod ≃ X for all clan-algebraic categories X.
4. T ≃ CZE(Mod(T ))op for all Cauchy-complete clans T .

• 1 and 2 are easy

• For 3 we use a Reedy factorization on 2-truncated semi-simplicial models

• For 4 we use the fat small object argument13, which implies that 0-extensions are filtered
colimits of representable algebras.

13 M. Makkai, J. Rosicky, and L. Vokrinek (2014). “On a fat small object argument”. Advances in Mathematics.



Part II : Models in Higher Types



Models in higher types

• Straightforward notion of higher model:A higher model of T is an ∞-functor T → S into the
∞-category S of homotopy types, which preserves 1 and display pullbacks in the ∞-categorical
sense (here T is viewed as ∞-category via its nerve).

• Simon told us yesterday that the higher models of the clan TCat of categories are Segal spaces.

• However, there is more than one clan whose category of 1-models is Cat!

• We can find other clans by exhibiting clan-algebraic factorization systems on Cat.



Four clan-algebraic weak factorization systems on Cat

Cat admits several clan-algebraic weak factorization systems:

• (E1,F1) is cofib. generated by {(0→ 1), (2→ 2) }
• (E2,F2) is cofib. generated by {(0→ 1), (2→ 2), (2→ 1)}
• (E3,F3) is cofib. generated by {(0→ 1), (2→ 2), (P→ 2) }
• (E4,F4) is cofib. generated by {(0→ 1), (2→ 2), (P→ 2), (2→ 1)}

where P = (•⇒ •).

The right classes are:

F1 = {full and surjective-on-objects functors}
F2 = {full and bijective-on-objects functors}
F3 = {fully faithful and surjective-on-objects functors}
F4 = {isos}

Note that F3 is the class of trivial fibrations for the canonical model structure on Cat.



Four clans for categories

These correspond to the following clans:

T1 = {free cats on fin. graphs}op T †1 = {graph inclusions}

T2 = {free cats on fin. graphs}op T †2 = {injective-on-edges maps}

T3 = {f.p. cats}op T †3 = {injective-on-objects functors}

T4 = {f.p. cats}op T †4 = {all functors}



Syntax: four GATs for categories

• Syntactially, adding (2→ 1) to the generators turns the diagonal of the type ⊢ O of objects
into a display map. This corresponds to adding an extensional identity type with rules

x y : O ⊢ E(x , y) type
x : O ⊢ r : E(x , x)

x y : O , p : E(x , y) ⊢ x = y
x y : O , p q : E(x , y) ⊢ p = q

to the GAT.

• Similarly, adding (P→ 2) corresponds to adding an extensional identity type with rules

x y : O , f g : A(x , y) ⊢ F (f , g) type
x y : O , f : A(x , y) ⊢ s : F (f , f )

x y : O , f g : A(x , y) , p : F (f , g) ⊢ f = g
x y : O , f g : A(x , y) , p q : F (f , g) ⊢ p = q

to the dependent type x y : O ⊢ A(x , y) of arrows.



Models in higher types

Models of T1 in S are Segal spaces, and adding extensional identity types to ⊢ O or to
x y : O ⊢ A(x , y) forces the respective types to be 0-truncated. Thus:

∞-Mod(T1) = {Segal spaces}
∞-Mod(T2) = {Segal categories}
∞-Mod(T3) = {pre-categories}
∞-Mod(T4) = {strict 1-categories}



Part III : The Shape of Contexts
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Motivation : Contexts in simple and dependent type theory

Contexts in simple type theory are flat:

x1 : A1, . . . , x : nAn ⊢ t(x1, . . . , xn) : B

Contexts in dependent type theory are linearly
ordered by dependency

x1:A1, x2:A2(x1), . . . , xn:A(x1, . . . , xn−1) ⊢ B(x⃗)

. . . but are they really?



Contexts in the GAT of categories

Consider again the GAT TCat of categories:

⊢ O

x y : O ⊢ A(x , y)

x : O ⊢ id(x) : A(x , x)

x y z:O , f:A(x,y) , g:A(y,z) ⊢ g◦f : A(x , z)

x y : O , f : A(x , y) ⊢ id(y)◦f = f
x y : O , f : A(x , y) ⊢ f ◦id(x) = f

w x y z : O , e : A(w , x) ,
f : A(x , y) , g : A(y , z) ⊢ (g◦f )◦e = g◦(f ◦e)

The context of A(x , y) has the shape

The context of composition g ◦ f has the shape

So maybe finite posets are a more realistic representation of dependent contexts than linear orders?

— It turns out that posets are not enough!



The need for non-posetal shapes

Consider the following pullback square in the syntactic category C[TCat] :

(x : O , f : A(x , x))
⌟

(x y : O , f : A(x , y))

(x : O) (x y : O)

This pullback lives contravariantly over the following pushout of shapes:

⌟

Taking the pushout in posets doesn’t give a well-behaved theory, we have to take it in categories.

More precisely in the following category of finite direct categories.



Finite direct categories

Definition

1. A category C is called direct if there are no infinite inverse paths A0 ← A1 ← A2 ← . . . of
non-identity arrows.

2. A category is called one-way, if the only endomorphisms are identities.

Lemma

1. Direct categories are one-way and skeletal.

2. A finite category is direct iff it is one-way and skeletal.

Definition

FDC is the category of finite direct categories and discrete fibrations.

The main source is Makkai15, who writes

One-way categories were isolated by F. W. Lawvere16 [. . . ] Lawvere observed that one-way
categories are intimately related to the sketch-based syntax of17.

15 M. Makkai (1995). “First order logic with dependent sorts, with applications to category theory”. Preprint.
16 F. William Lawvere (1991). “More on graphic toposes”. Cahiers de Topologie et Géométrie Différentielle

Catégoriques.
17 M. Makkai (1997). “Generalized sketches as a framework for completeness theorems. I-III”. Journal of Pure and

Applied Algebra.



FDC as a coclan

• In this talk we won’t pursue the feasability of doing type theory with FDC-shaped contexts (there
are obvious issues like definitional equality). Instead we focus on studying the category FDC.

• Among the discrete fibrations, the injective ones (a.k.a. sieve inclusions) are of special
importance: they correspond contravariantly to context extensions.

• Sieve inclusions are closed under composition and pullback (along arbitrary maps) in FDC, and
the the initial inclusions ∅ ↪→ D are obviously sieves.

⌟

• This means that FDC is a coclan (dual to a clan) with sieve inclusions as codisplay maps.



Models of FDC

Definition

Let FDC0 ⊆ FDC be the full subcategory on FDCs with terminal object (‘shapes of types’).

Given a model C : FDCop → Set, let C0 be its restriction to FDC0. We get the following pullback of
categories, where the vertical maps are discrete fibrations:

FDCop
0

FDCop Set

C0

C

elts(C0)
⌟

elts(C )

FDC0 FDC

Claim

The operation C 7→ C0 gives an equivalence Mod(FDCop) ≃ [FDCop
0 ,Set].



Locally finite direct categories

Definition

A locally finite direct category is a small category C all of whose slices C/c are equivalent to finite
direct categories.

LFDC is the category of locally finite direct categories and discrete fibrations.

• For every C : FDCop
0 → Set, the category of elements elts(C ) is a LFDC

• Conversely, for every LFDC C, we can define a functor

C→ FDC0, c 7→ C/c

all of whose slices are equivalences, meaning that it is a (Street) fibration of groupoids.

• We conclude that models of FDC correspond precisely to LFDCs where the fibers of C/− are
(equivalent to) sets, which means that the isomorphisms act freely on incoming non-iso arrows18.

• Let’s call such LFDCs moderate – non-moderate LFDCs include groups.

18Thanks to Simon Henry for pointing out that the Set-models of FDC do not comprise all LFDCs.



LFDCs vs DLFCs

• Direct locally finite categories (DLFCs) are the 0-extensions in LFDC.

• Examples of LFDCs that are not direct:

The index category of symmetric graphs 0 1 (with an involution on 1) is locally
direct but not direct.
FDC0 is locally finite direct – since FDC0/C ≃ C for all C ∈ FDC0 – but not direct, since there are
automorphisms.

• Construction: For every direct locally finite D, the image of of D/− : D→ FDC0 as a full
subcategory is a LFDC which is generally not direct.

D ↠ im(D/−) ↪→ FDC0

For example:

For the semisimplex category we obtain FinInj∗ – the category of non-empty finite sets and injections
for the ‘parallel pair category’ P, we get the index category of symmetric graphs.



Topos theoretic considerations

• The category DLFC ⊆ LFDC is almost a topos: all of its slices are toposes, but it does not have
a terminal object!

• To get a topos, we have to go to LFDC, adding automorphisms.

• Analogy: The category Manet of not-necessarily-Hausdorff eucliden Manifolds and local
homeomorphisms has topos-slices, but no terminal object. To get a terminal object we have to
switch to locally euclidean toposes, again introducing automorphisms.

• Adopting Anel/Joyal’s topos–logos distinctions, the category of locally euclidean toposes and
étale maps is the category of sheaves on the terminal locally euclidean toposesMan, which can
be represented by a site consisting of spaces Rn and étale maps, where covers are jointly
surjective families.

• The toposMan is étale-supterminal, the sense that the forgetful functor

Toposet/Man→ Toposet

is fully faithful. [FDCop
0 ,Set] has the same property.

• It seems to be crucial that the full sub-2-categories of Toposet on (toposes associated to) FDCs
as well as euclidean manifolds are locally discrete, since we want to make them into sites.



Thank you for your attention!


