Title: Free bicompletions of categories revisited

Speaker: André Joyal

Abstract: We revisit the theory of free bicompletion of categories. Category theory was extended to enriched ∞ -categories by many authors (J. Lurie [2017], D. Gepner and R. Haugseng [2015] H. Heine [2024]). Let \mathcal{V} a locally small bicomplete symmetric monoidal closed ∞ -category and $\mathcal{V}CAT$ be the category of \mathcal{V} -categories. A \mathcal{V} -weight is defined to be \mathcal{V} -diagram $W : \mathcal{J} \to \mathcal{V}$, and a \mathcal{V} -scale to be a class α of \mathcal{V} -weights; a \mathcal{V} -category \mathcal{E} is α -complete if it is closed under weighted limits $\{W, -\}$ for all $W \in \alpha$. Dually, a \mathcal{V} -category \mathcal{E} is α -complete. If (α, β) is a pair of scales, a \mathcal{V} -category \mathcal{E} is (α, β) -bicomplete if it is a complete. We show that every \mathcal{V} -category \mathcal{C} generates freely an (α, β) -bicomplete \mathcal{V} -category $\lambda : \mathcal{C} \to {}^{\alpha}\Lambda^{\beta}(\mathcal{C})$, moreover, it can be characterised by the following properties:

- 1. the functor $\lambda : \mathcal{C} \to {}^{\alpha}\Lambda^{\beta}(\mathcal{C})$ is fully faithful;
- 2. the category ${}^{\alpha}\Lambda^{\beta}(\mathcal{C})$ is (α, β) -bicomplete and generated by $\lambda(\mathcal{C})$;
- 3. every object in $\lambda(\mathcal{C})$ is an (α, β) -atoms;
- 4. the category $^{\alpha}\Lambda^{\beta}(\mathcal{C})$ is (α, β) -soft.

The general theory similar to the case where $\mathcal{V} = \mathsf{Set}$.

If time permits, I will propose a *philosophical* interpretation of these results.